• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型浅海环境下阵列声源波束角对声传播影响分析

卢艳阳 陈清浪 李勋 王兆弘

卢艳阳, 陈清浪, 李勋, 等. 典型浅海环境下阵列声源波束角对声传播影响分析[J]. 水下无人系统学报, 2025, 33(3): 552-558 doi: 10.11993/j.issn.2096-3920.2024-0150
引用本文: 卢艳阳, 陈清浪, 李勋, 等. 典型浅海环境下阵列声源波束角对声传播影响分析[J]. 水下无人系统学报, 2025, 33(3): 552-558 doi: 10.11993/j.issn.2096-3920.2024-0150
LU Yanyang, CHEN Qinglang, LI Xun, WANG Zhaohong. Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 552-558. doi: 10.11993/j.issn.2096-3920.2024-0150
Citation: LU Yanyang, CHEN Qinglang, LI Xun, WANG Zhaohong. Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 552-558. doi: 10.11993/j.issn.2096-3920.2024-0150

典型浅海环境下阵列声源波束角对声传播影响分析

doi: 10.11993/j.issn.2096-3920.2024-0150
详细信息
    作者简介:

    卢艳阳(1992-), 男, 高级工程师, 研究方向为水下声传播、水声信号处理及声呐系统技术等

  • 中图分类号: TJ67; U675

Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments

  • 摘要: 随着主动声呐技术的发展, 主动声呐的波束输出能力成为工程研究中的关注对象, 对于典型垂直线列阵声源, 研究其声信号波束角变化对声传播的影响很有必要。文中基于声场简正波理论推导了阵列声源的声场信号表达式, 发现声场信号主要受阵列声源在各阶模态的波束输出和接收深度上的模态幅度采样两者影响, 仿真结果表明, 波束声信号在接收深度上有明显的强弱分布结构, 且存在随声源深度增大最优波束角偏离0°越远的现象。文中基于推导的声场公式对现象机理进行了解释, 进而给出了典型浅海环境下不同声呐收发位置关系下的最优波束角设计建议, 为主动声呐声源波束设计研究及合理收发位置布设提供指导。

     

  • 图  1  阵列声源输出指向性信号示意图

    Figure  1.  Schematic diagram of directional signal output from array sound source

    图  2  典型浅海声速剖面

    Figure  2.  Profile of typical shallow sea sound velocity

    图  3  不同声源深度下传播损失随接收深度变化情况

    Figure  3.  The variation of propagation loss at different depths of sound sources in terms of receiving depths

    图  4  不同接收深度下传播损失随声源深度变化情况

    Figure  4.  The variation of propagation loss with the depth of the sound source at different receiving depths

    图  5  部分模态示意图

    Figure  5.  Schematic diagram of partial modes

    图  6  不同声源深度下阵列声源模态波束输出效果

    Figure  6.  Output effects of all modal beams of array sound source under different sound source depths

    图  7  不同收发关系下最优波束角分布示意图

    Figure  7.  Schematic diagram of optimal beam angle distribution under different transmission and reception relationships

  • [1] SHENG X, LU J, DONG W, et al. The research on the coverage area of multistatic sonar in various working modes[C]//OCEANS 2013 MTS/IEEE. San Diego, California, USA: IEEE, 2014.
    [2] ZHAO K, LIANG J, KARLSSON J, et al. Enhanced multistatic active sonar signal processing[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP 2013). Vancouver, British Columbia, Canada: IEEE, 2013: 300-311.
    [3] JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational ocean acoustics[M]. New York: Springer, 2011.
    [4] CABLE P G. A method to predict active sonar detection range in uncertain shallow water environments[J]. Journal of the Acoustical Society of America, 2006, 119(5): 3426.
    [5] YANG K, LU Y, LEI Z, et al. Passive localization based on multipath time-delay difference with two hydrophones in deep ocean[J]. Acoustics Australia, 2017, 45(1): 15-17.
    [6] DUAN R, YANG K D, MA Y L, et al. A reliable acoustic path: Physical properties and a source localization method[J]. Chinese Physics B, 2012, 21(12): 276-289.
    [7] URICK R J. Caustics and convergence zones in deep-water sound transmission[J]. Journal of the Acoustical Society of America, 1965, 37(6): 1191.
    [8] HALE F E. Long-range sound propagation in the deep ocean[J]. Journal of the Acoustical Society of America, 1959, 31(11): 1572. doi: 10.1121/1.1908691
    [9] YANG K, MA Y, SUN C, et al. Multistep matched-field inversion for broad-band data from ASIAEX2001[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 964-972. doi: 10.1109/JOE.2004.835211
    [10] YANG K, CHAPMAN N R, MA Y. Estimating parameter uncertainties in Geoacoustic inversion by a neighbourhood algorithm[J]. Journal of the Acoustical Society of America, 2007, 121(2): 833-843. doi: 10.1121/1.2427125
    [11] LEI Z, YANG K, MA Y. Passive localization in the deep ocean based on cross-correlation function matching[J]. Journal of the Acoustical Society of America, 2016, 139(6): 196-201. doi: 10.1121/1.4954053
    [12] DUAN R, YANG K, MA Y, et al. Moving source localization with a single hydrophone using multipath time delays in the deep ocean[J]. Journal of the Acoustical Society of America, 2014, 136(2): 159-65. doi: 10.1121/1.4890664
    [13] HERSTEIN P D, COLE B F, BROWNING D G, et al. Sensitivity of shallow water transmission loss to source and receiver proximity to a hard bottom under downward refracting conditions[J]. Journal of the Acoustical Society of America, 1992, 92(4): 2302.
    [14] COLE B F, PODESZWA E M. Shallow-water propagation under downward-refraction conditions[J]. Journal of the Acoustical Society of America, 1977, 41(6): 1479-1484.
    [15] COHEN J S, COLE B F. Shallow-water propagation under downward-refraction conditions. II[J]. Journal of the Acoustical Society of America, 1966, 40(5): 1244.
    [16] ZHANG Z Y. Analytical formulas for incoherent transmission loss in shallow water based on effective approximations of seafloor depth and reflectivity[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3407-3410.
  • 加载中
图(7)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-03
  • 修回日期:  2024-11-28
  • 录用日期:  2024-12-17
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回
    服务号
    订阅号