Research on Near-field High-frequency Echo Strength Characteristics of Small Undersea Vehicle
-
摘要: 针对小型水下航行器探测和识别的需求, 开展了小型水下航行器近场高频回声强度特性建模及仿真研究。利用板块元方法, 基于典型圆柱型航行器目标, 计算分析了小型航行器近场回声强度, 给出了小型航行器回声强度的空间分布特性。在此基础上, 开展了水池实验, 对比分析了实验实测结果和仿真结果的一致性和变化特性, 结果表明仿真和水池实验结果在空间分布趋势上具有一致性, 小型航行器在头段端面方位和正横方位具有较强的回声强度, 小型航行器近场高频回声强度特性呈蝶形特征分布。
-
关键词:
- 小型圆柱型水下航行器 /
- 近场声特性 /
- 高频声特性 /
- 回声强度特性
Abstract: In response to the need for detecting and identifying incoming small undersea vehicles, research has been conducted on modeling and simulating the high-frequency echo intensity characteristics of small undersea vehicle in the near field. This article uses the plate element method to calculate and analyze the near-field echo intensity of small undersea vehicle based on a cylindrical small undersea vehicle target, and presents the spatial distribution characteristics of the echo intensity of the small undersea vehicle target. On this basis, a pool test was conducted to compare and analyze the consistency and variation characteristics of the measured results and simulation results. The results showed that the simulation results and pool test results were consistent in spatial distribution trends, with strong echo intensity at the head end face and transverse azimuth of the small undersea vehicle target, and the high-frequency echo intensity characteristics of the small undersea vehicle near field exhibited a butterfly-like distribution. -
表 1 部分探测频率下部分方位角实验数据及计算结果
Table 1. Experimental data and calculation results of various azimuth angles at partial detection frequencies
探测方位角/(°) 直达波声程/m 目标回波声程/m 目标相对回声强度/dB $ {f_1} $ $ {f_3} $ $ {f_5} $ 时域分析法 频域分析法 时域分析法 频域分析法 时域分析法 频域分析法 0 1.67 3.67 6.827 6 7.175 8 7.127 0 7.330 2 6.866 5 7.456 1 30 0.90 2.24 −4.298 6 −4.006 2 −2.839 5 −2.703 8 −3.852 6 −3.245 9 45 0.92 2.10 −0.861 5 −0.686 2 1.475 3 1.827 8 1.464 8 2.015 7 60 0.60 3.15 −2.086 2 −1.978 6 1.664 5 2.000 9 1.893 8 2.203 0 75 0.839 2.97 7.247 7 7.609 4 5.584 4 5.609 2 3.726 9 3.865 5 90 0.83 2.92 6.033 9 6.073 3 5.845 4 5.985 6 5.025 0 4.584 9 120 0.60 3.68 6.463 3 6.784 5 −2.944 8 −4.115 8 0.176 2 −0.091 5 150 0.98 2.31 −1.132 7 −0.950 4 −6.522 3 −7.113 9 −6.910 4 −7.676 3 180 0.60 1.72 −6.277 9 −6.661 0 −2.269 3 −1.555 8 −3.768 0 −3.483 8 -
[1] 邓伟, 王新宁, 范军. 鱼雷回波特性研究[C]//中国声学学会水声学分会2013年全国水声学学会会议论文集中国声学学会水声学分会. 湛江: 《声学技术》编辑部, 2013. [2] 曹浩, 樊书宏, 周晶. 基于板块元法的鱼雷声散射特性分析[J]. 水下无人系统学报, 2022, 30(2): 184-189. doi: 10.11993/j.issn.2096-3920.2022.02.007CAO H, FAN S H, ZHOU J. Analysis of acoustic scattering characteristics of a torpedo based on planar elements method[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 184-189. doi: 10.11993/j.issn.2096-3920.2022.02.007 [3] 刘博, 范军, 王斌. 某小型潜航器的声散射特性研究[J]. 声学技术, 2021, 40(4): 458-463.LIU B, FAN J, WANG B. Study on acoustic scattering characteristics of a small submersible vehicle[J]. Technical Acoustics, 2021, 40(4): 458-463. [4] 刘博. 微小型无人潜航器典型结构声散射特性研究[D]. 上海: 上海交通大学, 2020. [5] 黎洁, 范军, 李兵. 蛙人推进器声散射特性研究[J]. 水下无人系统学报, 2022, 30(6): 733-739.LI J, FAN J, LI B. Acoustic scattering characteristics of a diver propulsion vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 733-739. [6] 宋君才, 卓琳凯, 范军. 特定形状小目标的回波特性分析[J]. 声学技术, 2010, 29(3): 323-326. doi: 10.3969/j.issn.1000-3630.2010.03.018SONG J C, ZHUO L K, FAN J. Research on the echo characteristics of small target with special shape[J]. Technical Acoustics, 2010, 29(3): 323-326. doi: 10.3969/j.issn.1000-3630.2010.03.018 [7] 戚乐华, 刘保华, 阚光明. 几种粗糙散射理论对海面中频后向声散射的有效性研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(1): 94-102.QI L H, LIU B H, KAN G M. The investigation of validity of common roughness scattering theories for sea surface acoustic backscattering at intermediate frequency range[J]. Periodical of Ocean University of China, 2021, 51(1): 94-102. [8] 朱利超, 魏鹏举, 高杰, 等. 基于亮点模型的水下目标近程回波仿真研究[J]. 舰船电子工程, 2011, 31(11): 153-155.ZHU L C, WEI P J, GAO J. Simulation of echoes from underwater scaling targets in short range based on highlight model[J]. Ship Electronic Engineering, 2011, 31(11): 153-155. [9] 李锐, 安俊英, 成刚. 目标高频近场声散射信号空间特性分析[J]. 声学与电子工程, 2018(4): 18-20. [10] 冯奇. 基于板块元法的水下复杂目标强度预报[J]. 鱼雷技术, 2010, 18(4): 258-262.FENG Q. Strength prediction of underwater comlicated target based on planar element method[J]. Torpedo Technology, 2010, 18(4): 258-262. [11] 张健, 周奇郑, 王德石. 水下低频球面声波近场与远场散射特性研究[J]. 水下无人系统学报, 2020, 28(5): 487-495.ZHANG J, Zhou Q Z, WANG D S. Near-field and far-field scattering characteristics of underwater low-frequency spherical acoustic wave[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 487-495. [12] 范军, 汤渭霖, 卓琳凯. 声呐目标回声特性预报的板块元方法[J]. 船舶力学, 2012, 16(1): 171-180.FAN J, FAN W L, ZHUO L K. Planar elements method for forecasting the echo characteristics from sonar targets[J]. Journal of Ship Mechanics, 2012, 16(1): 171-180 [13] URICK R J. Principles of underwater sound[M]. 3rd ed. New York: McGraw-Hill Book Co., 1983. -