Multi-Degree-of-Freedom Equipment Shock Response Model Based on Deep Learning
-
摘要: 针对舰艇多自由度设备在爆炸冲击载荷下的响应分析难题, 文中提出了一种基于深度学习的冲击响应预测模型。传统单自由度模型无法高效分析多自由度系统的复杂冲击响应, 而本模型通过深度学习技术, 特别是利用神经网络的数据特征提取和非线性建模能力, 从数值仿真数据中学习冲击谱与输入冲击载荷的关联, 实现了对舰艇结构中关键点冲击响应谱的高效、准确计算。这一方法填补了现有模型在处理多自由度设备时的不足, 满足了对复杂系统冲击响应快速准确分析的需求。实验结果表明, 该模型能准确预测多自由度设备的冲击响应谱, 与仿真数据的相对误差控制在8%以内, 有效解决了传统模型在多自由度系统分析中的局限性。Abstract: To address the challenge of analyzing the response of multi-degree-of-freedom naval equipment under explosive shock loads, this study proposes a deep learning-based shock response prediction model. Traditional single-degree-of-freedom models cannot effectively analyze the complex shock responses of multi-degree-of-freedom systems. Leveraging deep learning technology, particularly the data feature extraction and nonlinear modeling capabilities of neural networks, this model learns the relationship between the shock spectrum and input shock loads from numerical simulation data, achieving efficient and accurate calculation of shock response spectra at critical points within naval structures. This approach fills the gaps of existing models in handling multi-degree-of-freedom equipment and meets the demand for rapid, accurate analysis of complex system shock responses. Experimental results demonstrate that the model can accurately predict the shock response spectra of multi-degree-of-freedom equipment, with a relative error of less than 8% compared to simulation data, effectively overcoming the limitations of traditional models in multi-degree-of-freedom system analysis.
-
表 1 数值仿真工况
Table 1. Table of numerical simulation conditions
序号 水深(m) 爆距(m) 装药(kg) 方位 1 100 7 295 侧前方 2 100 7 295 正下方 3 100 7 295 侧后方 4 100 7 45 正下方 表 2 模型数据集信息
Table 2. Model dataset information
模型输入/输出数据信息 数据集划分信息 输入 冲击载荷时域加速度 训练集 95% 测试集 5% 输出 感兴趣点冲击响应谱 训练集 95% 测试集 5% 表 3 多工况下平均RMSE及平均RE
Table 3. Average RMSE and average RE under multiple operating conditions
工况 感兴趣点 平均RMSE 平均RE (%) 1 质量块1 0.126 6.1 质量块2 0.115 6.9 总体结构 0.093 6.3 2 质量块1 0.134 6.6 质量块2 0.151 6.8 总体结构 0.096 7.2 3 质量块1 0.122 7.6 质量块2 0.148 6.4 总体结构 0.121 7.5 4 质量块1 0.139 7.2 质量块2 0.094 7.8 总体结构 0.112 6.7 表 4 4种标准化方法计算公式
Table 4. Formulas for four standardization methods
标准化方法 计算公式 L1范数标准化 $ {y_i} = \dfrac{{{x_i}}}{{{{\left\| {{x_i}} \right\|}_p}}} $ 偏差标准化 $ {y_i} = \dfrac{{{x_i} - {x_{\min }}}}{{{x_{\max }} - {x_{\min }}}} $ 标准差标准化 $ {y_i} = \dfrac{{{x_i} - \mu }}{\sigma } $ 非线性标准化 $ {y_i} = \dfrac{1}{{1 + {{\mathrm{e}}^{ - {x_i}}}}} $ 表 5 4种标准化方法模型的平均RE与最大RE
Table 5. Comparison of traditional shock spectrum calculation methods
标准化方法 平均RE(%) 最大RE(%) L1范数标准化 7.8 8.7 偏差标准化 7.1 8.8 标准差标准化 10.5 13.7 非线性标准化 13.1 14.5 表 6 多自由度模型感兴趣点冲击响应谱计算效率对比
Table 6. Comparison of calculation efficiency for shock response spectra at key points in multi-degree-of-freedom models
方法 感兴趣点数 运行时间(s) 多自由度模型 3 5 5 8 传统方法 3 360 5 600 -
[1] 刘永明, 孙焕新, 杨裕根. 多自由度系统冲击谱研究[J]. 上海铁道大学学报(自然科学版), 1998, 23(6): 52-57.LIU YM, SUN HX, YANG Y G. A study on shock spectrum of multiple degrees of freedom system[J]. Journal of Shanghai Tiedao University (Natural Science Edition), 1998, 23(6): 52-57. [2] 姜涛, 周方毅, 张可玉等. 水面舰艇甲板设备抗冲击设计谱分析[J]. 工程爆破, 2009, 15(4): 8-12.JIANG T, ZHOU F Y, ZHANG K Y, et al. Analysis on design shock-resistant spectrum of equipment fixed on deck[J]. Engineering Blasting, 2009, 15(4): 8-12. [3] OH J S, LEE TH, CHOI S B. Design and analysis of a new magnetorheological damper for generation of tunable shock-wave profiles[J]. Shock and Vibration, 2018, 2018: 8963491(1). [4] TRUONG D D, JANG B S, JU HB. Development of simplified method for prediction of structural response of stiffened plates under explosion loads[J]. Marine Structures, 2021, 79: 103039. doi: 10.1016/j.marstruc.2021.103039 [5] LIU Y, REN S F, ZHAO P F. Application of the deep neural network to predict dynamic responses of stiffened plates subjected to near-field underwater explosion[J]. Ocean Engineering, 2022, 247: 110537. doi: 10.1016/j.oceaneng.2022.110537 [6] BRUNTON S L, KUTZ J N. Data-driven science and engineering: Machine learning, dynamical systems, and control[M]. 2nd ed. Cambridge: Cambridge University Press, 2022. [7] 钱丽娜. 基于神经网络的水下加筋圆柱壳冲击环境预报[D]. 哈尔滨: 哈尔滨工程大学, 2021. [8] 冯麟涵, 杨俊杰, 焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41(13): 189-194, 210.FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network[J]. Journal of Vibration and Shock, 2022, 41(13): 189-194, 210. [9] ZHANG M, DRIKAKIS D, LI L, et al. Machine-learning prediction of underwater shock loading on structures[J]. Computation, 2019, 7(4): 58. doi: 10.3390/computation7040058 [10] HEMATI M S, SAPSIS T P. Physics-informed machine learning for predicting extreme events in complex systems[J]. Physical Review Letters, 2017, 118: 084501. doi: 10.1103/PhysRevLett.118.084501 [11] YU Y, YAO H, LIU Y. Structural dynamics simulation using a novel physics-guided machine learning method[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103947. doi: 10.1016/j.engappai.2020.103947 [12] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technimetrics, 1979, 21(2): 239-245. [13] GUO J, GU C, YANG J, et al. Data mining and application of ship impact spectrum acceleration based on PNN neural network[J]. Ocean Engineering, 2020, 203: 107193. doi: 10.1016/j.oceaneng.2020.107193