Study on Effect of Tandem Charges with Different Charge Mass Ratios on Underwater Explosion Power
-
摘要: 为了探究串联两装药前后级不同药量比对水下爆炸威力的影响, 基于水中冲击波经验公式对串联两装药水下爆炸冲击波冲量进行理论分析, 对不同药量比串联两装药的水下爆炸威力进行数值仿真计算, 对比分析了相同药量下不同药量比串联两装药和单装药水下爆炸输出冲量规律和对目标结构的毁伤效果, 同时开展了串联两装药对目标结构毁伤的缩比水箱试验。结果表明: 在总装药量为400 gTNT时, 串联两装药结构水下爆炸输出冲量及对靶板作用效果明显优于单级装药, 且串联两装药水中爆炸威力随着前后级药量比η的增加而增大, 且当η=1∶1时冲量增益和靶板变形挠度最大, 冲量增益提高了27.43%, 靶板变形挠度提高了23.58%。小药量缩比试验结果与理论分析、数值仿真结果有较好的一致性。Abstract: In order to explore the influence of different charge mass ratios of tandem charges on the underwater explosion power, theoretical analysis of the impulse of the underwater explosion shock wave induced by tandem charges was carried out according to the empirical formula of the underwater shock wave, and the underwater explosion power of tandem charges with different charge mass ratios was numerically simulated. Under the same charge mass, the underwater explosion output impulse laws and the damage effects on the target structure of the tandem charge with different charge mass ratios and single charge were compared. At the same time, a scaled-down water tank test on the damage to the target structure caused by the tandem charge was carried out. The results show that when the total charge is 400 g TNT, the underwater explosion output impulse of the tandem charge structure and its effect on the target panel are obviously better than that of a single charge, and the explosion power of the tandem charge increases with the increase in the charge ratio η. When η is 1:1, the impulse gain and the deflection of the target panel are the largest, and the impulse gain is increased by 27.43%; the deflection of the target panel is increased by 23.58%. The scaled-down experiment results of small charges show good agreement with the theoretical analysis and numerical simulation results.
-
Key words:
- underwater explosion /
- tandem charge /
- charge mass ratio /
- target damage
-
表 1 TNT炸药状态方程参数
Table 1. Parameters of state equation for TNT
ρ/(g/cm3) A/kPa B/kPa R1 R2 1.63 3.73×108 3.747×106 4.15 0.9 ω D/(m/s) E/(kJ/m3) PCJ/kPa 0.35 6 930 6.0×106 2.10×107 表 2 水的状态方程参数
Table 2. Parameters of state equation for water
ρ/(g/cm3) A1/kPa A2/kPa A3/kPa 1 2.2×106 9.54×106 1.457×107 B0 B1 T1/kPa T2/kPa 0.28 0.28 2.2×106 0 表 3 Q235材料参数
Table 3. Material parameters of Q235
ρ(g/cm3) G/GPa A/MPa B/MPa 7.85 789 265 450 n C m Tmelt/K 0.565 0.67 0 1 793 表 4 冲击波峰值压力计算结果
Table 4. Calculation results of shock wave peak pressure
距爆心的
距离/mm压力/MPa 计算误差/% 球形
装药柱形
装药经验
公式解球形装药-
柱形装药球形装药-
经验公式300 168.59 168.87 168.74 0.17 0.68 400 109.93 109.07 110.25 0.78 0.29 500 79.24 79.68 81.21 0.56 2.43 600 60.88 61.74 66.08 1.41 7.87 700 48.89 50.22 55.52 2.72 11.94 表 5 不同药量比串联装药预估模型和数值仿真冲量对比
Table 5. Comparison of impulse between tandem charge prediction model and numerical simulation under different charge ratios
η 预估模型冲量/(N∙s) 数值仿真冲量/(N∙s) 误差/% 0∶400 11 922 11 646 2.32 40∶360 13 456 13 041 3.08 80∶320 13 821 13 485 2.43 100∶300 14 048 13 665 2.73 120∶280 14 232 13 887 2.42 160∶240 14 565 14 281 1.95 200∶200 15 048 14 841 1.38 表 6 不同药量比下数值仿真输出的冲量增益
Table 6. Impulse gain of numerical simulation output under different charge ratios
η 冲量/(N∙s) 误差/% 0∶400 11 646 0 40∶360 13 041 11.98 80∶320 13 485 15.79 100∶300 13 665 17.34 120∶280 13 887 19.24 160∶240 14 281 22.63 200∶200 14 841 27.43 表 7 数值仿真中靶板变形结果
Table 7. Deformation results of target plate in numerical simulation
工况 装药量/g 中心挠度/mm 前级 后级 一次爆炸 二次爆炸 增量 S-1 400 296.79 — — S-2 40 360 112.98 311.55 198.57 S-3 80 320 152.44 324.58 172.14 S-4 100 300 168.35 330.99 162.64 S-5 120 280 181.54 339.37 157.83 S-6 160 240 203.01 354.05 151.04 S-7 200 200 223.02 366.77 143.75 表 8 钢板挠度试验值与仿真值对比
Table 8. Comparison of test and simulation values of deflection of steel plate
工况 挠度试验值/mm 挠度仿真值/mm 误差/% E-1 17.70 16.79 5.14 E-2 19.90 20.36 2.31 E-3 18.80 17.36 7.66 E-4 22.50 22.53 0.13 -
[1] 顾文彬, 阳天海, 叶序双, 等. 单个装药浅层水中沉底爆炸的数值模拟[J]. 解放军理工大学学报(自然科学版), 2000(3): 51-55.GU W B, YANG T H, YE X S, et a1. Numerical simulation of single charge explosion on sea bed in shallow water[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2000(3): 51-55. [2] 胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究[J]. 高压物理学报, 2020, 34(1): 015102.HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. [3] 毛致远, 段超伟, 胡宏伟, 等. 水下爆炸威力试验与评价方法综述[J]. 水下无人系统学报, 2022, 30(3): 384-390.MAO Z Y, DUAN C W, HU H W, et a1. Review of testing and evaluation methods for underwater explosion power[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 384-390. [4] 郭涛, 吴亚军. 鱼雷战斗部技术研究现状及发展趋势[J]. 水下无人系统学报, 2012, 20(1): 74-77. doi: 10.3969/j.issn.1673-1948.2012.01.016GUO T, WU Y J. Perspective of the technologies about torpedo warhead[J]. Journal of Unmanned Undersea Systems, 2012, 20(1): 74-77. doi: 10.3969/j.issn.1673-1948.2012.01.016 [5] 孙百连, 顾文彬, 蒋建平, 等. 浅层水中沉底的两个装药爆炸的数值模拟研究[J]. 爆炸与冲击, 2003, 23(5): 460-465.SUN B L, GU W B, JIANG J P, et a1. Numerical simulation of explosion shock wave interaction in shallow layer water[J]. Explosion and Shock Waves, 2003, 23(5): 460-465. [6] 盛振新, 刘荣忠, 郭锐. 水下爆炸冲击波相互作用的仿真分析[J]. 火工品, 2012(3): 25-29.SHENG Z X, LIU R Z, GUO R. Study on the shock waves interaction of underwater explosions[J]. Initiators & Pyrotechnics, 2012(3): 25-29. [7] 吴国群, 张明晓, 弓启祥, 等. 水下爆炸冲击波相互作用的研究[J]. 煤矿爆破, 2011(2): 12-15.WU G Q, ZHANG M X, GONG Q X, et al. Study on the interaction of the shock waves in underwater explosions[J]. Coal Mine Blasting, 2011(2): 12-15. [8] 吴成, 廖莎莎, 高峰, 等. 分体串联装药水下爆炸对固支方板的复合作用及其分析[J]. 北京理工大学学报, 2009, 29(8): 659-662.WU C, LIAO S S‚ GAO F, et al. Dynamic response of clamped square plates under double loadings of tande m charges underwater explosion[J]. Journal of Beijing Institute of Technology, 2009, 29(8): 659-662. [9] HU H W, SONG P, GUO S F, et al. Shock wave and bubble characteristics of underwater array explosion of charges[J]. Defence Technology, 2022, 18(8): 1445-1453. [10] CUI P, WANG Q X, WANG S P, et al. Experimental study on interaction and coalescence of synchronized multiple bubbles[J]. Physics of Fluids, 2016, 28(1): 94. [11] RUNGSIYAPHORNRAT S, KLASEBOER E, KHOO B C, et al. The merging of two gaseous bubbles with an application to underwater explosions[J]. Computers & Fluids, 2003, 32(8): 1049-1074. [12] COLE P. 水下爆炸[M]. 罗耀杰, 译. 北京: 国防工业出版社, 1960. [13] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion[R]. [S.l.]: [s.n.], 1973. [14] Century Dynamics Inc. Autodyn material library, Version 17.0[DB]. Los Angeles: Century Dynamics Inc., 2016. [15] 李旭东, 尹建平, 杜志鹏, 等. 多次水下爆炸钢制圆板应变与挠度增长规律分析[J]. 振动与冲击, 2020, 39(5): 131-136.LI X D, YIN J P, DU Z P, et al. Growth law analysis for strain and deflection of steel circular plates subjected to multiple underwater explosions[J]. Journal of Vibration and Shock, 2020, 39(5): 131-136. -