• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型水下航行器爆炸毁伤动力学特性研究

严侃

严侃. 典型水下航行器爆炸毁伤动力学特性研究[J]. 水下无人系统学报, 2024, 32(6): 1108-1116 doi: 10.11993/j.issn.2096-3920.2024-0139
引用本文: 严侃. 典型水下航行器爆炸毁伤动力学特性研究[J]. 水下无人系统学报, 2024, 32(6): 1108-1116 doi: 10.11993/j.issn.2096-3920.2024-0139
YAN Kan. Dynamic Characteristics of Explosive Damage to Typical Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1108-1116. doi: 10.11993/j.issn.2096-3920.2024-0139
Citation: YAN Kan. Dynamic Characteristics of Explosive Damage to Typical Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1108-1116. doi: 10.11993/j.issn.2096-3920.2024-0139

典型水下航行器爆炸毁伤动力学特性研究

doi: 10.11993/j.issn.2096-3920.2024-0139
详细信息
    作者简介:

    严侃:严 侃(1980-), 男, 高级工程师, 主要研究方向为流固耦合动力学

  • 中图分类号: TJ630.1; U674

Dynamic Characteristics of Explosive Damage to Typical Undersea Vehicles

  • 摘要: 文中研究探讨的大型水下航行器结构的爆炸毁伤特性, 不仅对于提高航行器的生存能力至关重要, 也对海战中的战术应用和战略部署具有深远的影响。首先, 使用结构化任意拉格朗日-欧拉(S-ALE)算法建立了水下航行器和爆炸模型, 总结了水下爆炸下近壁面气泡运动特性。之后探讨了在水下爆炸冲击波和气泡载荷作用下, 航行器结构的破坏特性。结果表明, 静水压力会扩大爆炸对结构的毁伤。当航行器结构遭遇两发武器攻击时, 在一定范围内, 水平布置的两爆源间距越大, 航行器毁伤越严重。

     

  • 图  1  加筋板模型示意图

    Figure  1.  Schematic diagram of reinforced plate model

    图  2  加筋板毁伤结果对比

    Figure  2.  Comparison of damage results of the reinforced plate

    图  3  200 m水深下水下爆炸气泡运动形态

    Figure  3.  Movement pattern of underwater explosion bubbles at a depth of 200 m

    图  4  气泡半径变化曲线

    Figure  4.  Bubble radius variation curve

    图  5  水下航行器结构示意图

    Figure  5.  Structure diagram of the undersea vehicle

    图  6  单爆源布置示意图

    Figure  6.  Schematic diagram of single explosive source layout

    图  7  不同水深下近壁面气泡溃灭特性与结构形变

    Figure  7.  Bubble collapse characteristics and structural deformation near the wall under different depths

    图  8  不同水深下气泡半径变化曲线

    Figure  8.  Curves of bubble radius under different depths

    图  9  不同水深下航行器结构形变云图

    Figure  9.  Structural deformation contours of the undersea vehicle under different depths

    图  10  不同水深下结构迎爆点应变变化曲线

    Figure  10.  Strain variation curve of the blast point of the structure under different depths

    图  11  不同水深下结构迎爆点速度变化曲线

    Figure  11.  Velocity curves of the blast point of the structure under different depths

    图  12  双爆源布置示意图

    Figure  12.  Diagram of dual explosion sources layout

    图  13  不同间距下航行器结构形变云图

    Figure  13.  Structural deformation contour of the undersea vehicle at different distances

    图  14  不同间距下结构迎爆点应变变化曲线

    Figure  14.  Strain curves of blast points of the structure at different distances

    图  15  不同间距下结构迎爆点速度变化曲线

    Figure  15.  Velocity curves of blast points of the structure at different distances

    表  1  TNT炸药状态方程参数

    Table  1.   Parameters of TNT explosive state equation

    编号材料参数数值
    1A/Pa3.71×1011
    2B/Pa3.21×109
    3Ρ/(kg/m3)1630
    5R14.15
    6R20.95
    7ω0.35
    8e/(J/kg)4.29×106
    下载: 导出CSV

    表  2  空气状态方程参数

    Table  2.   Parameters of air state equation

    编号材料参数数值
    1C0~C3C60
    2C4C50.4
    3E/(J/m3)2.53×105
    下载: 导出CSV

    表  3  水状态方程参数

    Table  3.   Parameters of water state equation

    编号材料参数数值
    1ρ0/(kg/m3)1 025
    2c/(m/s)1 480
    3S12.56
    4S2−1.986
    5S30.226 8
    6γ00.5
    7E/(J/m3)1.01×105
    下载: 导出CSV

    表  4  不同网格尺寸下加筋板最大破裂尺寸结果

    Table  4.   Results of maximum rupture size of reinforced plates under different grid sizes

    网格尺寸/mm仿真结果/mm实验结果/mm误差/%
    39759800.5
    49719801.0
    59599802.1
    69449803.7
    89219806.0
    109059807.7
    下载: 导出CSV

    表  5  不同水深下气泡特性

    Table  5.   Bubble characteristics at different depths

    水深/m气泡最大半径/m气泡载荷/Pa
    1003.36.8×106
    1502.77.2×106
    2002.57.4×106
    2502.37.6×106
    3002.27.9×106
    下载: 导出CSV

    表  6  不同水深下结构迎爆点毁伤特性

    Table  6.   Damage characteristics of structural blast point under different depths

    水深/m最大应变最大速度/(m/s)
    1000.0404.37
    1500.0455.00
    2000.0805.64
    2500.17024.38
    3000.23051.10
    下载: 导出CSV

    表  7  不同间距下结构迎爆点毁伤特性

    Table  7.   Damage characteristics of structural blast points at different distances

    D/m最大应变最大速度/(m/s)
    00.0645.64
    40.0274.07
    60.0533.91
    80.0859.85
    下载: 导出CSV
  • [1] 彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013

    PENG Y Y, WANG M M, GAO C W. Research on the damage characteristics of grillage structures subjected to near-field underwater blast wave[J]. Journal of Ship Mechanics, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013
    [2] LIU N N, ZHANG A M, CUI P, et al. Interaction of two out-of-phase underwater explosion bubbles[J]. Physics of Fluids, 2021, 33(10): 106103. doi: 10.1063/5.0064164
    [3] HUANG X, HU J, ZHANG X, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: Centrifuge test and numerical simulation[J]. Ocean Engineering, 2022, 243: 110291. doi: 10.1016/j.oceaneng.2021.110291
    [4] 徐维铮, 赵宏涛, 李业勋, 等. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究[J]. 爆炸与冲击, 2023, 43(9): 209-219.

    XU W Z, ZHAO H T, LI Y X, et al. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion and Shock Waves, 2023, 43(9): 209-219.
    [5] YUAN J H, ZHU X. Dynamic response of a ring-stiffened cylindrical shell subjected to underwater explosive loading[J]. Applied Mechanics and Materials, 2012, 105: 931-936.
    [6] 贾宪振, 胡毅亭, 董明荣, 等. 水下爆炸冲击波毁伤鱼雷壳体结构的数值仿真研究[J]. 弹箭与制导学报, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039

    JIA X Z, HU Y T, DONG M R, et al. Numerical simulation study on underwater explosion shock wave damaging torpedo shell structure[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039
    [7] 陈高杰, 宋英杰, 邢津浩. 双爆源水下爆炸对圆柱壳结构的毁伤特性研究[J]. 中国舰船研究, 2024, 19(3): 134-149.

    CHEN G J, SONG Y J, XING J H. Damage characteristics of cylindrical shell structure subjected to double UNDEX[J]. Chinese Journal of Ship Research, 2024, 19(3): 134-149 .
    [8] 赵伟成, 翟红波, 毛伯永. 协同爆炸时冲击波毁伤效应研究综述[J]. 兵器装备工程学报, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017

    ZHAO W C, ZHAI H B, MAO B Y. A review of research on damage effect of shock wave during coordinated explosion[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017
    [9] HUANG X, MAO J W, LI Q, et al. On the interaction between the underwater explosion and the double-layer structure with an orifice on the outer plate[J]. Ocean Engineering, 2024, 306: 118050. doi: 10.1016/j.oceaneng.2024.118050
    [10] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55-63.

    YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55-63.
    [11] SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading[J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574
    [12] DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods[J]. Encyclopedia of Computational Mechanics, 2004(1): 1-23.
    [13] BOMAN R, PONTHOT J P. Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4323-4353. doi: 10.1016/j.cma.2004.01.034
    [14] KIM J H, SHIN H C. Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank[J]. Ocean Engineering, 2008, 35(8-9): 812-822 doi: 10.1016/j.oceaneng.2008.01.019
    [15] 郑永辉, 魏继锋. 水介质初始参数设置对水下爆炸载荷的影响[J]. 爆炸与冲击, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485

    ZHENG Y H, WEI J F. Effect of initial parameter setting of water on load characteristics of underwater explosion[J]. Explosion and Shock Waves, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485
    [16] LIN S, WANG J, LIU L, et al. Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate[J]. Ocean Engineering, 2021, 240: 109985. doi: 10.1016/j.oceaneng.2021.109985
    [17] ZHANG Q L, HUANG X Y, LI Z. Coupled acoustic-structural analysis of a partially submerged circular RC column in an underwater explosion event: Factors to be considered for loading[J]. Ocean Engineering, 2021, 232: 109122. doi: 10.1016/j.oceaneng.2021.109122
    [18] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验[J]. 中国造船, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007

    ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion[J]. Shipbuilding of China, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007
    [19] 陈继恩. 基于应力三轴度的材料失效研究[D]. 武汉: 华中科技大学, 2012.
    [20] LIANG H, ZHANG Q, LONG R, et al. Pulsation behavior of a bubble generated by a deep underwater explosion[J]. AIP Advances, 2019, 9(2): 025108. doi: 10.1063/1.5086361
    [21] LI Q, LUO X, ZHONG Z X, et al. Damage characteristics of structure under underwater explosion and bubble flooding loads[J]. Journal of Marine Science and Engineering, 2024, 12(10): 1709. doi: 10.3390/jmse12101709
    [22] GAO Y, WANG S, ZHANG J, et al. Effects of underwater explosion depth on shock wave overpressure and energy[J]. Physics of Fluids, 2022, 34(3): 037108. doi: 10.1063/5.0081107
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  21
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 修回日期:  2024-11-08
  • 录用日期:  2024-12-06
  • 网络出版日期:  2024-12-16

目录

    /

    返回文章
    返回
    服务号
    订阅号