Dynamic Characteristics of Explosive Damage to Typical Undersea Vehicles
-
摘要: 文中研究探讨的大型水下航行器结构的爆炸毁伤特性, 不仅对于提高航行器的生存能力至关重要, 也对海战中的战术应用和战略部署具有深远的影响。首先, 使用结构化任意拉格朗日-欧拉(S-ALE)算法建立了水下航行器和爆炸模型, 总结了水下爆炸下近壁面气泡运动特性。之后探讨了在水下爆炸冲击波和气泡载荷作用下, 航行器结构的破坏特性。结果表明, 静水压力会扩大爆炸对结构的毁伤。当航行器结构遭遇两发武器攻击时, 在一定范围内, 水平布置的两爆源间距越大, 航行器毁伤越严重。Abstract: This study examined the explosive damage characteristics of large undersea vehicle structures, which are crucial for improving the survivability of undersea vehicles and have far-reaching influence on tactical application and strategic deployment in naval battle. Initially, the study utilized the structured arbitrary Lagrangian-Eulerian(S-ALE) model to create models for both an undersea vehicle and underwater explosion and analyzed the characteristics of bubble motion near the wall in underwater explosion. It then investigated the structural damage characteristics of the vehicle under the influence of underwater explosion shockwaves and bubble loads. The results reveal that hydrostatic pressure amplifies the damage inflicted by explosion. Furthermore, when the undersea vehicle is exposed to attacks from two explosive charges, a greater distance between the horizontally arranged explosion sources within a certain range results in a more severe damage to the vehicle.
-
Key words:
- underwater explosion /
- undersea vehicle /
- bubble /
- damage characteristics
-
表 1 TNT炸药状态方程参数
Table 1. Parameters of TNT explosive state equation
编号 材料参数 数值 1 A/Pa 3.71×1011 2 B/Pa 3.21×109 3 Ρ/(kg/m3) 1630 5 R1 4.15 6 R2 0.95 7 ω 0.35 8 e/(J/kg) 4.29×106 表 2 空气状态方程参数
Table 2. Parameters of air state equation
编号 材料参数 数值 1 C0~C3、C6 0 2 C4、C5 0.4 3 E/(J/m3) 2.53×105 表 3 水状态方程参数
Table 3. Parameters of water state equation
编号 材料参数 数值 1 ρ0/(kg/m3) 1 025 2 c/(m/s) 1 480 3 S1 2.56 4 S2 −1.986 5 S3 0.226 8 6 γ0 0.5 7 E/(J/m3) 1.01×105 表 4 不同网格尺寸下加筋板最大破裂尺寸结果
Table 4. Results of maximum rupture size of reinforced plates under different grid sizes
网格尺寸/mm 仿真结果/mm 实验结果/mm 误差/% 3 975 980 0.5 4 971 980 1.0 5 959 980 2.1 6 944 980 3.7 8 921 980 6.0 10 905 980 7.7 表 5 不同水深下气泡特性
Table 5. Bubble characteristics at different depths
水深/m 气泡最大半径/m 气泡载荷/Pa 100 3.3 6.8×106 150 2.7 7.2×106 200 2.5 7.4×106 250 2.3 7.6×106 300 2.2 7.9×106 表 6 不同水深下结构迎爆点毁伤特性
Table 6. Damage characteristics of structural blast point under different depths
水深/m 最大应变 最大速度/(m/s) 100 0.040 4.37 150 0.045 5.00 200 0.080 5.64 250 0.170 24.38 300 0.230 51.10 表 7 不同间距下结构迎爆点毁伤特性
Table 7. Damage characteristics of structural blast points at different distances
D/m 最大应变 最大速度/(m/s) 0 0.064 5.64 4 0.027 4.07 6 0.053 3.91 8 0.085 9.85 -
[1] 彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013PENG Y Y, WANG M M, GAO C W. Research on the damage characteristics of grillage structures subjected to near-field underwater blast wave[J]. Journal of Ship Mechanics, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013 [2] LIU N N, ZHANG A M, CUI P, et al. Interaction of two out-of-phase underwater explosion bubbles[J]. Physics of Fluids, 2021, 33(10): 106103. doi: 10.1063/5.0064164 [3] HUANG X, HU J, ZHANG X, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: Centrifuge test and numerical simulation[J]. Ocean Engineering, 2022, 243: 110291. doi: 10.1016/j.oceaneng.2021.110291 [4] 徐维铮, 赵宏涛, 李业勋, 等. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究[J]. 爆炸与冲击, 2023, 43(9): 209-219.XU W Z, ZHAO H T, LI Y X, et al. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion and Shock Waves, 2023, 43(9): 209-219. [5] YUAN J H, ZHU X. Dynamic response of a ring-stiffened cylindrical shell subjected to underwater explosive loading[J]. Applied Mechanics and Materials, 2012, 105: 931-936. [6] 贾宪振, 胡毅亭, 董明荣, 等. 水下爆炸冲击波毁伤鱼雷壳体结构的数值仿真研究[J]. 弹箭与制导学报, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039JIA X Z, HU Y T, DONG M R, et al. Numerical simulation study on underwater explosion shock wave damaging torpedo shell structure[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039 [7] 陈高杰, 宋英杰, 邢津浩. 双爆源水下爆炸对圆柱壳结构的毁伤特性研究[J]. 中国舰船研究, 2024, 19(3): 134-149.CHEN G J, SONG Y J, XING J H. Damage characteristics of cylindrical shell structure subjected to double UNDEX[J]. Chinese Journal of Ship Research, 2024, 19(3): 134-149 . [8] 赵伟成, 翟红波, 毛伯永. 协同爆炸时冲击波毁伤效应研究综述[J]. 兵器装备工程学报, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017ZHAO W C, ZHAI H B, MAO B Y. A review of research on damage effect of shock wave during coordinated explosion[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017 [9] HUANG X, MAO J W, LI Q, et al. On the interaction between the underwater explosion and the double-layer structure with an orifice on the outer plate[J]. Ocean Engineering, 2024, 306: 118050. doi: 10.1016/j.oceaneng.2024.118050 [10] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55-63.YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55-63. [11] SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading[J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574 [12] DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods[J]. Encyclopedia of Computational Mechanics, 2004(1): 1-23. [13] BOMAN R, PONTHOT J P. Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4323-4353. doi: 10.1016/j.cma.2004.01.034 [14] KIM J H, SHIN H C. Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank[J]. Ocean Engineering, 2008, 35(8-9): 812-822 doi: 10.1016/j.oceaneng.2008.01.019 [15] 郑永辉, 魏继锋. 水介质初始参数设置对水下爆炸载荷的影响[J]. 爆炸与冲击, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485ZHENG Y H, WEI J F. Effect of initial parameter setting of water on load characteristics of underwater explosion[J]. Explosion and Shock Waves, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485 [16] LIN S, WANG J, LIU L, et al. Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate[J]. Ocean Engineering, 2021, 240: 109985. doi: 10.1016/j.oceaneng.2021.109985 [17] ZHANG Q L, HUANG X Y, LI Z. Coupled acoustic-structural analysis of a partially submerged circular RC column in an underwater explosion event: Factors to be considered for loading[J]. Ocean Engineering, 2021, 232: 109122. doi: 10.1016/j.oceaneng.2021.109122 [18] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验[J]. 中国造船, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion[J]. Shipbuilding of China, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007 [19] 陈继恩. 基于应力三轴度的材料失效研究[D]. 武汉: 华中科技大学, 2012. [20] LIANG H, ZHANG Q, LONG R, et al. Pulsation behavior of a bubble generated by a deep underwater explosion[J]. AIP Advances, 2019, 9(2): 025108. doi: 10.1063/1.5086361 [21] LI Q, LUO X, ZHONG Z X, et al. Damage characteristics of structure under underwater explosion and bubble flooding loads[J]. Journal of Marine Science and Engineering, 2024, 12(10): 1709. doi: 10.3390/jmse12101709 [22] GAO Y, WANG S, ZHANG J, et al. Effects of underwater explosion depth on shock wave overpressure and energy[J]. Physics of Fluids, 2022, 34(3): 037108. doi: 10.1063/5.0081107