• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质固定翼飞行器飞行剖面设计与翼型优选及变弯度影响分析

陆吉昕 宋文滨 曹润桢 梁一帆 冯留柱 祁洋

陆吉昕, 宋文滨, 曹润桢, 等. 跨介质固定翼飞行器飞行剖面设计与翼型优选及变弯度影响分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0125
引用本文: 陆吉昕, 宋文滨, 曹润桢, 等. 跨介质固定翼飞行器飞行剖面设计与翼型优选及变弯度影响分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0125
LU Jixin, SONG Wenbin, CAO Runzhen, LIANG Yifan, FENG Liuzhu, QI Yang. Profile Design, Airfoil Preference and Variable Wing Camber Impact Analysis for Trans-Medium Fixed-Wing Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0125
Citation: LU Jixin, SONG Wenbin, CAO Runzhen, LIANG Yifan, FENG Liuzhu, QI Yang. Profile Design, Airfoil Preference and Variable Wing Camber Impact Analysis for Trans-Medium Fixed-Wing Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0125

跨介质固定翼飞行器飞行剖面设计与翼型优选及变弯度影响分析

doi: 10.11993/j.issn.2096-3920.2024-0125
详细信息
    作者简介:

    陆吉昕(2003-), 本科, 研究方向为跨介质飞行器总体和结构设计

  • 中图分类号: V221+.3

Profile Design, Airfoil Preference and Variable Wing Camber Impact Analysis for Trans-Medium Fixed-Wing Vehicles

  • 摘要: 实现水空跨介质飞行的关键包括跨介质飞行剖面设计以及同时满足空中巡航的气动效率和水下滑翔对机翼翼型的不同要求。文中以一小型跨介质飞行器为平台, 首先提出了一种基于传统固定翼飞行器与水下滑翔机融合设计的跨介质飞行剖面方案, 确定若干典型工况, 并根据工况选定了基于NACA 00和NACA 44系列的备选翼型, 采用Fluent的可压流动模型, 对备选翼型集开展数值分析, 通过数值仿真计算了备选翼型在空气与水中的升阻比、升力线斜率、升阻系数和力矩系数等气动和水动力特性, 作为跨介质固定翼飞行器翼型的优选目标函数和约束条件。重点分析了其水下航行剖面下的优选翼型以及相应的飞行/潜航运动参数之间的关系, 特别是翼型弯度变化对水下续航时间和航程的影响, 为跨介质飞行器的方案设计提供翼型优选决策, 建立的分析流程可为翼型的参数优化提供参考。

     

  • 图  1  吉林大学四旋翼跨介质飞行器

    Figure  1.  Quadrotor trans-medium vehicle designed by Jilin University

    图  2  上海交通大学 “哪吒” III 跨介质飞行器

    Figure  2.  “Nezha”III trans-medium vehicle designed by Shanghai Jiao Tong University

    图  3  Dipper跨介质飞行器

    Figure  3.  Dipper trans-medium vehicle

    图  4  AquaMAV跨介质飞行器

    Figure  4.  AquaMAV trans-medium vehicle

    图  5  SLOCUM G3水下滑翔机

    Figure  5.  SLOCUM G3 underwater glider

    图  6  水下滑翔机航行剖面

    Figure  6.  The profile of the underwater glider

    图  7  正常飞行状态下机翼产生的正升力

    Figure  7.  Positive lift direction in normal flight

    图  8  水下滑翔状态下机翼改变后缘弯度产生的负升力

    Figure  8.  Negative lift from changing trailing-edge curvature in underwater gliding condition

    图  9  跨介质固定翼飞行器飞行剖面

    Figure  9.  Flight profile of the trans-medium fixed-wing vehicle

    图  10  活水舱注满时机身位置剖面图

    Figure  10.  Fuselage in the water with water tanks filled up

    图  11  跨介质飞行器和传统水下滑翔机水下下潜动力学模型

    Figure  11.  Underwater submersion dynamic model of the trans-medium vehicle and the underwater glider

    图  12  跨介质飞行器水下上浮动力学模型

    Figure  12.  Underwater ascending dynamic model of the trans-medium vehicle

    图  13  浅航跨介质飞行器与水下滑翔机水下运行轨迹对比

    Figure  13.  Comparison of underwater trajectories of shallow-water trans-medium vehicles and traditional underwater gliders

    图  14  嵌入晶格柔顺结构的机翼结构

    Figure  14.  Wing structure after embedding of negative Poisson’s ratio cell elements

    图  15  嵌入非均匀晶格后机翼变形侧视图

    Figure  15.  Side view of the deformation of a wing with negative Poisson’s ratio cell elements embedded in non-uniform lattice

    图  16  NACA 0008及0012翼型升阻系数及拟合曲线

    Figure  16.  Lift and drag coefficients and fitted curves of NACA 0008 and 0012airfoils

    图  17  跨介质飞行器水下续航性能模型构建

    Figure  17.  Construction of underwater endurance performance model of the trans-medium vehicle

    图  18  固定翼型弯度下NACA系列翼型水下最大续航时间和里程

    Figure  18.  Maximum underwater endurance time and range of NACA series airfoils under the fixed wing curvature

    图  19  可调翼型弯度下NACA系列翼型水下最大续航时间和里程

    Figure  19.  Maximum underwater endurance time and range of fixed NACA series airfoils under the adjustable wing curvature

    图  20  可调弯度翼型与固定翼型水下最大续航时间对比

    Figure  20.  Comparison of underwater maximum endurance time between the adjustable wing curvature airfoil and the fixed wing curvature airfoil

    图  21  水下可调弯度翼型与固定翼型水下最大续航里程对比

    Figure  21.  Comparison of underwater maximum endurance range between the adjustable wing curvature airfoil and the fixed wing curvature airfoil

    表  1  不同网格数和介质下NACA 4412翼型升力和阻力系数

    Table  1.   Lift and drag coefficients of NACA 4412 airfoil under different grid numbers in air and water

    介质网格数量网格间距($ \Delta x/c $)升力系数阻力系数
    空气介质
    网格1
    385 5004.903×10−30.789 8070.018 86
    空气介质
    网格2
    172 7008.258×10−30.785 1140.018 88
    空气介质
    网格3
    42 64029.270×10−30.777 7980.019 13
    水下介质
    网格1
    686 8003.452×10−30.713 1050.031 07
    水下介质
    网格2
    173 0007.995×10−30.713 4720.031 14
    水下介质
    网格3
    43 00025.883×10−30.708 8120.030 89
    下载: 导出CSV

    表  2  跨介质飞行器具体参数

    Table  2.   Parameters of the trans-medium vehicle

    参数数值
    总质量/kg10.12
    总体积/L23.84
    机翼面积/m20.31
    总可用电量/Wh25.01
    推进涵道组最大实际推力/kg4.275
    推进涵道组最大实际功率/W2 376
    机身水动阻力系数0.1
    下载: 导出CSV
  • [1] 姜钧喆. 水下滑翔机总体设计与水动力性能分析[D]. 上海: 上海交通大学, 2020.
    [2] CHENG Y X, SONG W B, HAN K X. Analysis and Testing of Distributed Electric Fan on Air-water Vehicle[C]// AIAA Aviation 2023 Forum. San Diego, CA, USA: AIAA, 2023.
    [3] HAN K X, SONG W B. Concept Generation of New Configurations for Air-Water Vehicles[C]//AIAA Aviation 2022 Forum. Chicago, IL, USA: AIAA, 2022.
    [4] WEI J, SHA Y B, HU X Y, et al. Research on Aerodynamic Characteristics of Trans-Media Vehicles Entering and Exiting the Water in Still Water and Wave Environments[J]. Drones, 2023, 7(2): 7020069.
    [5] LYU C, LU D, XIONG C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [6] ROCKENBAUER F M, JEGER S L, BELTRAN L, et al. Dipper: A Dynamically Transitioning Aerial-Aquatic Unmanned Vehicle[C]//Robotics: Science and Systems XVII. [S.l.]: RSS, 2021.
    [7] SIDDAL L R, KOVAČ M. Launching the AquaMAV: bioinspired design for aerial–aquaticrobotic platforms[J/OL]. Bioinspiration & Biomimetics, 2014, 9(3): 031001[2024-05-16]. https://iopscience.iop.org/article/ 10.1088/1748-3182/9/3/031001. DOI: 10.1088/1748-3182/9/3/031001.
    [8] HOCKLEY C J. Improving Seaglider Efficiency: An Analysis of Wing Shapes, Hull Mor phologies, and Propulsion Methods[D]. Daytona Beach, FL, USA: Embry-Riddle Aeronautical University, 2018.
    [9] 侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.

    HOU T G, JIN D Z, GONG Y Y, et al. Advances in frontier technologies of water-air transmedia vehicles[J]. Science and Technology Bulletin, 2023, 41(2): 5-22.
    [10] LYU C, LU D, XIONG C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [11] TYAGI A, SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5-6): 798-809. doi: 10.1016/j.oceaneng.2005.06.004
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-28
  • 修回日期:  2024-09-23
  • 录用日期:  2024-10-21
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回
    服务号
    订阅号