Profile Design, Airfoil Preference and Variable Wing Camber Impact Analysis for Trans-Medium Fixed-Wing Vehicles
-
摘要: 实现水空跨介质飞行的关键包括跨介质飞行剖面设计以及同时满足空中巡航的气动效率和水下滑翔对机翼翼型的不同要求。文中以一小型跨介质飞行器为平台, 首先提出了一种基于传统固定翼飞行器与水下滑翔机融合设计的跨介质飞行剖面方案, 确定若干典型工况, 并根据工况选定了基于NACA 00和NACA 44系列的备选翼型, 采用Fluent的可压流动模型, 对备选翼型集开展数值分析, 通过数值仿真计算了备选翼型在空气与水中的升阻比、升力线斜率、升阻系数和力矩系数等气动和水动力特性, 作为跨介质固定翼飞行器翼型的优选目标函数和约束条件。重点分析了其水下航行剖面下的优选翼型以及相应的飞行/潜航运动参数之间的关系, 特别是翼型弯度变化对水下续航时间和航程的影响, 为跨介质飞行器的方案设计提供翼型优选决策, 建立的分析流程可为翼型的参数优化提供参考。Abstract: To achieve controlled trans-medium flight for trans-medium fixed-wing vehicles, it is essential to conduct a dynamical analysis for various working conditions within the typical mission configuration. Initially, the airfoil design for trans-medium fixed-wing vehicles primarily derives from seaplane wings, unmanned aerial vehicle (UAV) folding wings, and biomimetic wings. It remains unclear how traditional airfoil designs optimized for aerial cruising perform under underwater powered propulsion and gliding conditions. This paper proposed a profile for trans-medium fixed-wing vehicles based on an integrated design of traditional fixed-wing aircraft and underwater gliders. Utilizing typical NACA 00 and NACA 44 series airfoils, numerical simulations were conducted to compare aerodynamic and hydrodynamic properties such as lift-to-drag ratios, lift and drag coefficients, and moment coefficients in air and water environments. After summarizing performance evaluation criteria for existing UAV airfoils and underwater glider wings, key typical operational states were identified by combining the mission profile of trans-medium vehicles. This led to the establishment of design objective functions and constraints for trans-medium fixed-wing vehicle airfoils. Based on these conditions and the mission profile of trans-medium vehicles, recommendations for trans-medium vehicle airfoil designs were provided. Some best airfoils from the NACA 4-digit series and corresponding motion parameters were also suggested for this small-scale platform and its underwater navigation profile. The analytical methods used in this work are based on the Fluent compressible flow model, with parametric airfoil definitions and a combination of boundary layer and hybrid mesh techniques. After analyzing mesh sensitivity, numerical analysis of standard airfoils was conducted, establishing a procedure for airfoil parameter sensitivity analysis, which can facilitate further parameter optimization studies.
-
Key words:
- Trans-medium /
- fixed-wing vehicle /
- general design /
- flight profile /
- underwater glider /
- airfoil
-
表 1 不同网格数和介质下NACA
4412 翼型升力和阻力系数Table 1. Lift and drag coefficients of NACA
4412 airfoil under different grid numbers in air and water介质 网格数量 网格间距($ \Delta x/c $) 升力系数 阻力系数 空气介质
网格1385 500 4.903×10−3 0.789 807 0.018 86 空气介质
网格2172 700 8.258×10−3 0.785 114 0.018 88 空气介质
网格342 640 29.270×10−3 0.777 798 0.019 13 水下介质
网格1686 800 3.452×10−3 0.713 105 0.031 07 水下介质
网格2173 000 7.995×10−3 0.713 472 0.031 14 水下介质
网格343 000 25.883×10−3 0.708 812 0.030 89 表 2 跨介质飞行器具体参数
Table 2. Parameters of the trans-medium vehicle
参数 数值 总质量/kg 10.12 总体积/L 23.84 机翼面积/m2 0.31 总可用电量/Wh 25.01 推进涵道组最大实际推力/kg 4.275 推进涵道组最大实际功率/W 2 376 机身水动阻力系数 0.1 -
[1] 姜钧喆. 水下滑翔机总体设计与水动力性能分析[D]. 上海: 上海交通大学, 2020. [2] CHENG Y X, SONG W B, HAN K X. Analysis and Testing of Distributed Electric Fan on Air-water Vehicle[C]// AIAA Aviation 2023 Forum. San Diego, CA, USA: AIAA, 2023. [3] HAN K X, SONG W B. Concept Generation of New Configurations for Air-Water Vehicles[C]//AIAA Aviation 2022 Forum. Chicago, IL, USA: AIAA, 2022. [4] WEI J, SHA Y B, HU X Y, et al. Research on Aerodynamic Characteristics of Trans-Media Vehicles Entering and Exiting the Water in Still Water and Wave Environments[J]. Drones, 2023, 7(2): 7020069. [5] LYU C, LU D, XIONG C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063 [6] ROCKENBAUER F M, JEGER S L, BELTRAN L, et al. Dipper: A Dynamically Transitioning Aerial-Aquatic Unmanned Vehicle[C]//Robotics: Science and Systems XVII. [S.l.]: RSS, 2021. [7] SIDDAL L R, KOVAČ M. Launching the AquaMAV: bioinspired design for aerial–aquaticrobotic platforms[J/OL]. Bioinspiration & Biomimetics, 2014, 9(3): 031001[2024-05-16]. https://iopscience.iop.org/article/ 10.1088/1748-3182/9/3/031001. DOI: 10.1088/1748-3182/9/3/031001. [8] HOCKLEY C J. Improving Seaglider Efficiency: An Analysis of Wing Shapes, Hull Mor phologies, and Propulsion Methods[D]. Daytona Beach, FL, USA: Embry-Riddle Aeronautical University, 2018. [9] 侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.HOU T G, JIN D Z, GONG Y Y, et al. Advances in frontier technologies of water-air transmedia vehicles[J]. Science and Technology Bulletin, 2023, 41(2): 5-22. [10] LYU C, LU D, XIONG C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063 [11] TYAGI A, SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5-6): 798-809. doi: 10.1016/j.oceaneng.2005.06.004