• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反海底掩埋目标毁伤技术可行性分析

李炜辰 康松逸 蔡一 高源 贾曦雨

李炜辰, 康松逸, 蔡一, 等. 反海底掩埋目标毁伤技术可行性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0124
引用本文: 李炜辰, 康松逸, 蔡一, 等. 反海底掩埋目标毁伤技术可行性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0124
LI Weichen, KANG Songyi, CAI Yi, GAO Yuan, JIA Xiyu. Reflections on Anti-Sea-Buried Target Destruction Techniques[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0124
Citation: LI Weichen, KANG Songyi, CAI Yi, GAO Yuan, JIA Xiyu. Reflections on Anti-Sea-Buried Target Destruction Techniques[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0124

反海底掩埋目标毁伤技术可行性分析

doi: 10.11993/j.issn.2096-3920.2024-0124
详细信息
    作者简介:

    李炜辰(1988-), 男, 硕士, 高级工程师, 从事水下防御武器系统研究

    通讯作者:

    贾曦雨(1988-), 男, 副研究员, E-mail: 6120230120@bit.edu.cn.

Reflections on Anti-Sea-Buried Target Destruction Techniques

  • 摘要: 文章探讨了现代战争和海洋安全中对海底掩埋目标进行有效摧毁的技术和方法。由于这些目标隐蔽性强且毁伤难度大, 主要采用动能侵彻体和爆破载荷进行处理。动能侵彻体由于其高效的穿透能力和设计简易性, 更适合处理深埋目标, 并通过二次爆炸增强毁伤效果。文章分析了不同海底介质对侵彻效果的影响, 并通过数值仿真和实验研究优化侵彻体设计。爆破载荷因其广泛的作用范围和高命中率而被广泛应用。文章还讨论了冲击波传播特性、成坑效应、爆腔特征和液化效应对目标毁伤的影响。未来的研究建议包括加强海底介质侵彻和爆炸机理的基础研究, 建立高精度模型, 并开发模拟海底环境的实验平台, 以提升摧毁海底掩埋目标的能力。

     

  • 图  1  不同弹头形状的侵彻体

    Figure  1.  Penetrators with different warhead shapes

    图  2  不同直径弹体侵彻深度变化曲线

    Figure  2.  Penetration depth curves of the projectile with different diameters

    图  3  侵彻前后的钙质砂介质

    Figure  3.  The original and crushed calcareous sand

    图  4  不同埋药深度下爆坑形态

    Figure  4.  Explosive pit morphology with different buried depths

    图  5  不同深度同一水平面饱和钙质砂超孔隙水压力比与比例距离的关系曲线

    Figure  5.  Curves of saturated calcareous sand superporous water pressure ratio versus proportional distance at the same level and different depths

  • [1] OMIDVAR M, MALIOCHE J D, BLESS S, et al. Phenomenology of rapid projectile penetration into granular soils[J]. International Journal of Impact Engineering, 2015, 85: 146-160. doi: 10.1016/j.ijimpeng.2015.06.002
    [2] 张冬梅, 张亚. 基于ANSY/SLS-DYNA头部形状对钻地斜侵彻土壤影响的数值分析[J]. 现代机械, 2010(5): 21-22,72. doi: 10.3969/j.issn.1002-6886.2010.05.009

    ZHANG D M, ZHANG Y. The analysis of effects of the nose shape for the process of the earth penetrating shell into soil by ANSYS/LS-DYNA[J]. Modern Machinery, 2010(5): 21-22,72. doi: 10.3969/j.issn.1002-6886.2010.05.009
    [3] 苗伟伟, 程怡豪, 文祝, 等. 不同头部形状弹体侵彻石英砂的试验研究[J]. 防护工程, 2017, 39(5): 6-12.

    MIAO W W, CHENG Y H, WEN Z, et al. Experimental study on the penetration into silica sand by projectiles with different nose shape[J]. Protective Engineering, 2017, 39(5): 6-12.
    [4] 徐策, 王峰会, 王绍明. 不同头部形状弹体侵彻土壤过程研究[J]. 科学技术与工程, 2011, 11(15): 3435-3438. doi: 10.3969/j.issn.1671-1815.2011.15.016

    XU C, WANG F H, WANG S M. On the penetrations of soil and foam with different nose shapes[J]. Science Technology and Engineering, 2011, 11(15): 3435-3438. doi: 10.3969/j.issn.1671-1815.2011.15.016
    [5] 徐策. 基于LS-DYNA的土壤侵彻过程研究[J]. 黑龙江科技信息, 2014(5): 83, 85.
    [6] 范一锴, 黄新. 平头弹低速侵彻黏土的数值模拟研究[J]. 科学技术与工程, 2012, 12(22): 5537-5540. doi: 10.3969/j.issn.1671-1815.2012.22.025

    FAN Y K, HUANG X. Numerical simulation of flat-nose projectile low-velocity penetration into clay soil[J]. Science Technology and Engineering, 2012, 12(22): 5537-5540. doi: 10.3969/j.issn.1671-1815.2012.22.025
    [7] 杨冬梅, 王晓鸣. 动能弹对有限厚土壤介质靶侵彻的数值仿真[J]. 弹箭与制导学报, 2003(S6): 58-60.

    YANG D M, WANG X M. Numerical simulation of kinetic bomb penetrating soil[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003(S6): 58-60.
    [8] 张永亮, 李永池, 章杰, 等. 异型弹对有限厚土壤靶的侵彻规律研究[J]. 弹道学报, 2018, 30(2): 60-66. doi: 10.12115/j.issn.1004-499X(2018)02-11

    ZHANG Y L, LI Y C, ZHANG J, et al. Study on penetration law of special-shaped projectile to soil target with finite thickness[J]. Journal of Ballistics, 2018, 30(2): 60-66. doi: 10.12115/j.issn.1004-499X(2018)02-11
    [9] FORRESTAL M J, LUK V K. Penetration into soil targets[J]. Int. J. Impact Engng, 1992, 12(3): 427-444. doi: 10.1016/0734-743X(92)90167-R
    [10] QIAN L X, YANG Y B, LIU T. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets[J]. International Journal of Impact Engineering, 2000, 24(9): 947-955. doi: 10.1016/S0734-743X(00)00008-7
    [11] SHI C C, WANG M Y, ZHANG K L, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility[J]. International Journal of Impact Engineering, 2015, 83: 1-10. doi: 10.1016/j.ijimpeng.2015.04.007
    [12] 姚鹏, 徐波, 高有涛. 高速及超高速钻地弹侵彻土壤深度及轨迹的研究[J]. 测试技术学报, 2013, 27(6): 521-528.

    YAO P, XU B, GAO Y T. The study of trajectory and depth of hyper and conventional velocity of earth penetrator[J]. Journal of Test and Measurement Technology, 2013, 27(6): 521-528.
    [13] 张瑞萍. 弹箭侵彻器对土壤和岩石的侵彻机理研究及弹道计算[J]. 兵工学报, 1997(3): 212-216.

    ZHANG R P. A study on the penetration mechanism and trajectory of projectile and rocket penetrators into soil and rock[J]. Acta Armamentarii, 1997(3): 212-216.
    [14] 何翔, 吴祥云, 曲建波. 细长弹丸侵彻土壤介质的实验研究[C]//第二届全国爆炸力学实验技术交流会论文集

    S. l. ]: 安徽省力学学会, 2002.
    [15] KIM K S. Numerical modeling of solid particle dynamics using the moving particle semi-implicit(MPS) method in seabed penetration scenarios[J]. Journal of Coastal Research, 2023, 116(SI): 548-552.
    [16] 董凯, 任辉启, 阮文俊, 等. 爆炸冲击下珊瑚砂动态本构模型[J]. 爆炸与冲击, 2021, 41(4): 64-75. doi: 10.11883/bzycj-2020-0172

    DONG K, REN H Q, RUAN W J, et al. Dynamic constitutive model of coral sand under blast loading[J]. Explosion and Shock Waves, 2021, 41(4): 64-75. doi: 10.11883/bzycj-2020-0172
    [17] 苗伟伟, 邱艳宇, 程怡豪, 等. 钙质砂侵彻试验与理论研究[J]. 振动与冲击, 2019, 38(17): 232-237.

    MIAO W W, QIU Y Y, CHENG Y H, et al. Penetration tests of calcareous sandand theoretical study[J]. Journal of Vibration and Shock, 2019, 38(17): 232-237.
    [18] 侯满义, 葛贤坤, 刘加丛, 等. 动能侵彻弹丸对沙质土层侵彻研究[J]. 弹箭与制导学报, 2003(S3): 296-297.

    HOU M Y, GE X K, LIU J C, et al. Study on Baehavior of Powerful Pill Penertrating into Sand Soil[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003(S3): 296-297.
    [19] 董永香, 冯顺山, 李砚东, 等. 土介质对低速弹丸的抗侵彻性能实验研究[J]. 高压物理学报, 2007(4): 419-424. doi: 10.3969/j.issn.1000-5773.2007.04.015

    DONG Y X, FENG S S, LI Y D, et al. Experimental study on penetration resistance of soil with low-velocity projectile[J]. Chinese Journal of High Pressure Physics, 2007(4): 419-424. doi: 10.3969/j.issn.1000-5773.2007.04.015
    [20] WANG Y G, LIAO C C, WANG J H, et al. Dynamic response of pipelines with various burial depth due to underwater explosion[J]. Ocean Engineering, 2018, 164: 114-126. doi: 10.1016/j.oceaneng.2018.06.045
    [21] 佟锦岳, 石教往. 三峡高土石围堰水下爆炸压实技术研究[J]. 长江科学院院报, 1997(4): 80-85.

    TONG J Y, SHI J W. Research on technology of underwater blasting compaction for TGPs high soil rock cofferdam[J]. Journal of Changjiang River Scientific Research Institute, 1997(4): 80-85.
    [22] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究[J]. 岩土力学, 2012, 33(10): 2953-2959.

    XU X Y, WANG R, WANG X Z, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J]. Rock and Soil Mechanics, 2012, 33(10): 2953-2959.
    [23] 单海波, 徐全军, 陈国祥, 等. 球形装药淤泥中爆炸场数值模拟及分析[J]. 工程爆破, 2004(1): 13-15,40. doi: 10.3969/j.issn.1006-7051.2004.01.004

    SHAN H B, XU Q J, CHEN G X, et al. Numerical simulation and analysis on explosion field of a spherical chare in silt[J]. Engineering Blasting, 2004(1): 13-15,40. doi: 10.3969/j.issn.1006-7051.2004.01.004
    [24] 赵章泳, 邱艳宇, 王明洋, 等. 非饱和钙质砂中平面爆炸波传播试验研究[J]. 防护工程, 2017, 39(3): 22-28.

    ZHAO Z Y, QIU Y Y, WANG M Y, et al. Experimental study on plane explosive wave propagation in unsaturated calcareous sand[J]. Protective Engineering, 2017, 39(3): 22-28.
    [25] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应[J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112-116.

    MU Z M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2010, 11(2): 112-116.
    [26] 赵均海, 冯红波, 田宏伟, 等. 土中爆炸作用的数值分析[J]. 建筑科学与工程学报, 2011, 28(1): 96-99,117.

    ZHAO J H, FENG H B, TIAN H W, et al. Numerical analysis of explosion process in soil[J]. Journal of Architecture and Civil Engineering, 2011, 28(1): 96-99,117.
    [27] 王海亮, 冯长根, 侯兆霞, 等. 土中爆炸成腔半径的计算[J]. 爆破器材, 2001(3): 19-22. doi: 10.3969/j.issn.1001-8352.2001.03.005

    WANG H L, FENG C G, HOU Z X, et al. The calculation on radius of explosion cavity in soil[J]. Explosive Materials, 2001(3): 19-22. doi: 10.3969/j.issn.1001-8352.2001.03.005
    [28] 王清洁, 顾文彬, 茼茂辉, 等. 半无限土介质中集团装药爆炸空腔的数值模拟[J]. 爆破, 2002(3): 17-19. doi: 10.3963/j.issn.1001-487X.2002.03.006

    WANG Q J, GU W B, TONG M H, et al. Numerical simulation of cylindrical charges explosion in semi-infinite soil medium[J]. Blasting, 2002(3): 17-19. doi: 10.3963/j.issn.1001-487X.2002.03.006
    [29] 韩宝成, 王丽琼, 冯长根. 集中药包土中爆炸成腔的三维数值模拟[J]. 计算机仿真, 2002(4): 86-88. doi: 10.3969/j.issn.1006-9348.2002.04.025

    HAN B C, WANG L Q, FENG C G. The 3-D numerical emulation of spherical charge blasting in soils[J]. Computer Simulation, 2002(4): 86-88. doi: 10.3969/j.issn.1006-9348.2002.04.025
    [30] 顾强康, 陈涛, 李宁. 条形装药土中爆炸成腔的三维数值模拟[J]. 路基工程, 2007(1): 24-26. doi: 10.3969/j.issn.1003-8825.2007.01.010

    GU Q K, CHEN T, LI N. Three dimensional numerical simulation for explosion cavity forming of linear charge in soil[J]. Subgrade Engineering, 2007(1): 24-26. doi: 10.3969/j.issn.1003-8825.2007.01.010
    [31] 陈太林, 刘荣忠, 胡功笠, 等. 航空炸弹对土壤侵彻和爆炸效应的计算分析[J]. 弹箭与制导学报, 2003(2): 46-47, 55. doi: 10.3969/j.issn.1673-9728.2003.02.015

    CHEN T L. LIU R Z, HU G L. et al. Penetration into soil of aerial bomb and computation of the explosion to bear fruits[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003(2): 46-47, 55. doi: 10.3969/j.issn.1673-9728.2003.02.015
    [32] 乔继延, 丁桦, 郑哲敏. 爆炸排淤填石法中淤泥的本构模型[J]. 工程爆破, 2003(3): 1-6. doi: 10.3969/j.issn.1006-7051.2003.03.001

    QIAO J Y, DING H, ZHENG Z M. Seaooze constitutive model for toe-shooting method[J]. Engineering Blasting, 2003(3): 1-6. doi: 10.3969/j.issn.1006-7051.2003.03.001
    [33] 黄杰, 李明鸿, 吴拓展, 等. 钙质砂场地爆炸成坑实验与数值模拟研究[J]. 爆炸与冲击, 2023, 43(10): 30-45. doi: 10.11883/bzycj-2022-556

    HUANG J, LI M H, WU T Z, et al. Experimental and numerical simulation studies on blast-induced craters in calcareous sand[J]. Explosion and Shock Waves, 2023, 43(10): 30-45. doi: 10.11883/bzycj-2022-556
    [34] 王海亮, 冯长根, 王丽琼. 土中爆炸成腔的现场试验研究[J]. 火炸药学报, 2001(2): 12-15. doi: 10.3969/j.issn.1007-7812.2001.02.004
    [35] 崔溦, 宋慧芳, 张社荣, 等. 爆炸荷载作用下土中爆坑形成的数值模拟[J]. 岩土力学, 2011, 32(8): 2523-2528. doi: 10.3969/j.issn.1000-7598.2011.08.045

    CUI W, SONG H F, ZHANG S R, et al. Numerical simulation of craters produced by explosion in soil[J]. Rock and Soil Mechanics, 2011, 32(8): 2523-2528. doi: 10.3969/j.issn.1000-7598.2011.08.045
    [36] LUCCIONI B, AMBROSINI R D. Effect of buried explosions[J]. Computational Mechanics, 2007, 26: 2656-2673.
    [37] LUCCIONI B, AMBROSINI D, NURICK G, et al. Craters produced by underground explosions[J]. Computational Mechanics, 2009, 87(21-22): 1366-1373.
    [38] AMBROSINI D, LUCCIONI B. Craters Produced by Large-Scale Explosions[J]. Computational Mechanics, 2008, 26: 1801-1822.
    [39] 王仲琦, 张奇, 白春华. 爆炸挤压粘土密度变化过程的数值模拟[J]. 岩土工程学报, 2001(3): 350-353. doi: 10.3321/j.issn:1000-4548.2001.03.020

    WANG Z Q, ZHANG Q, BAI C H. Numerical simulation on variation of density of the soil compacted by explosion[J]. Chinese Journal of Geotechnical Engineering, 2001(3): 350-353. doi: 10.3321/j.issn:1000-4548.2001.03.020
    [40] 许连坡, 顾道良, 李世海. 在海淤中爆破的一些现象和问题[J]. 爆炸与冲击, 1989(4): 328-337. doi: 10.3321/j.issn:1001-1455.1989.04.003

    XU L P, GU D L, LI S H. Phenomena and problems of blasting in seaooze[J]. Explosion and Shock Waves, 1989(4): 328-337. doi: 10.3321/j.issn:1001-1455.1989.04.003
    [41] 吴拓展, 宗周红, 李明鸿, 等. 浅埋单药包爆炸作用下饱和钙质砂基础液化数值模拟[J]. 东南大学学报(自然科学版), 2022, 52(2): 237-246. doi: 10.3969/j.issn.1001-0505.2022.02.005

    WU T Z, ZONG Z H, LI M H, et al. Numerical simulation of liquefaction in saturated calcareous sand foundation induced by single charge shallow-buried explosion[J]. Journal of Southeast University: Natural Science Edition, 2022, 52(2): 237-246. doi: 10.3969/j.issn.1001-0505.2022.02.005
    [42] ESMAEILI M, TAVAKOLI B. Finite element method simulation of explosive compaction in saturated loose sandy soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 446-459. doi: 10.1016/j.soildyn.2018.09.048
  • 加载中
图(5)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-27
  • 修回日期:  2024-08-23
  • 录用日期:  2024-09-09
  • 网络出版日期:  2025-01-17

目录

    /

    返回文章
    返回
    服务号
    订阅号