Research Progress and Development Trend of Air-Sea Cross-domain Communication
-
摘要: 伴随着人们对空中与海洋之间实时通信和数据传输需求的日益增长, 研究稳健可靠的空海跨域通信技术非常重要。但是, 由于空气与海水2种介质的不同特性以及恶劣环境的影响, 使得空海跨域通信信道复杂多变, 平稳地穿过空-水界面面临重大困难。为了更好地了解空海跨域通信技术发展脉络, 文中对目前空海跨域通信研究进行了梳理与总结, 全面阐述了其工作环境及通信技术发展情况, 并将其分为空海跨域链路级直接通信和空海跨域中继通信两大类, 而后分别从研究现状、面临困难、拟解决方法等方面对其进行详细总结及分析。最后, 讨论了未来研究方向。文中所做研究可为带动空海跨域通信技术的发展提供助力。Abstract: At present, there is an increasing demand for real-time communication and data transmission between the air and the sea. Therefore, it is important to study robust and reliable air-sea cross-domain communication technologies. However, due to the different characteristics of the two media and the impact of harsh environments, air-sea cross-domain communication channels are complex and varied, making it difficult to smoothly pass through the air-water interface. In order to better understand the development of air-sea cross-domain communication technologies, the current research on air-sea cross-domain communication was comprehensively summarized, and its working environment and development of communication technologies were explained. The technologies were divided into two categories: air-sea cross-domain link-level direct communication and air-sea cross-domain relay communication. Then, the research status, difficulties, and proposed solutions were summarized. Finally, future research directions were discussed. The research can help to promote the development of air-sea cross-domain communication technologies.
-
表 1 近年空海跨域光通信系统实验演示情况
Table 1. Recent experimental demonstrations of air-sea cross-domain optical communication systems
文献 发射机 接收机 距离(空气/水)/m 数据率 水类型 调制方式 其他 [3] LD APD 0/2 1.08 Gbit/s 静止 离散多音频调制 轨道角动量 [18] LD SiPM <1 <110 kbit/s 静止 — — [19] LD APD 5/21 5.5 Gbit/s 静止 32-QAM-OFDM 双向传输 [20] VCSEL PD 50/5 256 Gbit/s 静止 PAM4 空分复用, 浑浊水 [21] LD PD 100/10 500 Gbit/s 静止 PAM4 — [22] LD APD 8/3.6 2.2 Gbit/s 静止 GS-8QAM-OFDM — [6] LD APD 3.5/2.3 44 Mbit/s 波动 4QAM-OFDM — [24] LED UAV 10/10 — 波动 — 蒙特卡罗方法, 纯水 [27] LED APD 0.6/0.3 43.7 Mbit/s 波动 4QAM-OFDM 浪高=15 mm [30] LD APD 0.5/0.5 1.5 Gbit/s 波动 4QAM-OFDM — [31] LD PD 1.2/0.2 412 Mbit/s 波动 PAM SIMO [32] LD APD 8.8 400 Gbit/s 波动 WDM, PAM4 浑浊水 [35] LD SiPM 0.33/0.17 4.2 Mbit/s 波动 脉冲位置调制 浪高=10~12 cm
波束跟踪[36] LD PD 0.8/0.1 — 波动 PAM4 波束跟踪 [28] LD+ED/GGD APD 2/2 1 Gbit/s — — — 注: SiPM为硅光电倍增管(silicon photomultiplier); VCSEL为垂直腔表面发射激光器(vertical-cavity surface-emitting laser); PD为光电二极管(photodiode); UAV为无人机(unmanned aerial vehicle); QAM为正交幅度调制(quadrature amplitude modulation) -
[1] BERGE J, GEOFFROY M, JOHNSEN G, et al. Ice-tethered observational platforms in the Arctic Ocean pack ice[J]. IFAC-PapersOnLine, 2016, 49(23): 494-499. doi: 10.1016/j.ifacol.2016.10.484 [2] 丁巍伟, 黄豪彩, 朱心科, 等. 一种新型潜标式海洋地震仪及在海洋地震探测中的应用[J]. 地球物理学进展, 2019, 34(1): 292-296. doi: 10.6038/pg2019BB0549DING W W, HUANG H C, ZHU X K, et al. New mobile oceanic seismic recording system and its application in marine seismic exploration[J]. Progress in Geophysics, 2019, 34(1): 292-296. doi: 10.6038/pg2019BB0549 [3] WANG A, ZHU L, ZHAO Y, et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 2018, 26(7): 8669-78. doi: 10.1364/OE.26.008669 [4] 李沫, 郭栋, 周东红, 等. 卫星互联网支撑跨域无人集群作战[J]. 水下无人系统学报, 2024, 32(2): 208-214. doi: 10.11993/j.issn.2096-3920.2024-0043LI M, GUO D, ZHOU D H, et al. Cross-domain unmanned cluster combat supported by satellite Internet[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 208-214. doi: 10.11993/j.issn.2096-3920.2024-0043 [5] BAI L, HAN R, LIU J, et al. Random access and detection performance of Internet of Things for smart ocean[J]. IEEE Internet of Things Journal, 2020, 7(10): 9858-69. doi: 10.1109/JIOT.2020.2990164 [6] SUN X, KONG M, ALKHAZRAGI O A, et al. Field demonstrations of wide-beam optical communications through water-air interface[J]. IEEE Access, 2020, 8: 160480-89. doi: 10.1109/ACCESS.2020.3020878 [7] 乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议、仿真与试验综述[J]. 水下无人系统学报, 2017, 25(3): 151-160.QIAO G, LIU S Z, LIU Q P. Review of protocols, simulation and experimentation for underwater acoustic communication network[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 151-160. [8] KISSELEFF S, AKYILDIZ I F, GERSTACKER W H. Survey on advances in magnetic induction-based wireless underground sensor networks[J]. IEEE Internet of Things Journal, 2018, 5(6): 4843-56. doi: 10.1109/JIOT.2018.2870289 [9] QIAO G, BABAR Z, MA L, et al. MIMO-OFDM underwater acoustic communication systems—A review[J]. Physical Communication, 2017, 23: 56-64. doi: 10.1016/j.phycom.2017.02.007 [10] GUQHAIMAN A A, AKANBI O, ALJAEDI A, et al. A survey on MAC protocol approaches for underwater wireless sensor networks[J]. IEEE Sensors Journal, 2020, 21(3): 3916-32. [11] SUN X, KANG C H, KONG M, et al. A review on practical considerations and solutions in underwater wireless optical communication[J]. Journal of Lightwave Technology, 2020, 38(2): 421-431. doi: 10.1109/JLT.2019.2960131 [12] YAHIA S, MERAIHI Y, RAMDANE-CHERIF A, et al. A survey of channel modeling techniques for visible light communications[J]. Journal of Network and Computer Applications, 2021, 194: 103206. doi: 10.1016/j.jnca.2021.103206 [13] QU Z, LAI M. A review on electromagnetic, acoustic and new emerging technologies for submarine communication[J]. IEEE Access, 2024, 12: 12110-25. doi: 10.1109/ACCESS.2024.3353623 [14] LUO H, WANG J, BU F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-82. doi: 10.1109/JSEN.2022.3162600 [15] HAMILTON S A, DeVoe C E, FLETCHER A S, et al. Undersea narrow-beam optical communications field demonstration[C]//Ocean Sensing and Monitoring IX. Anaheim, U. S.: SPIE, 2017: 7-22. [16] 焦崇淼, 贺岩, 胡善江, 等. 基于高空飞机激光通信的轨迹预报、跟踪和指向系统[J]. 光学学报, 2024, 44(6): 237-245.JIAO C M, HE Y, HU S J, et al. Orbit forecasting, tracking, and pointing system based on high-altitude aircraft laser communication[J]. Acta Optica Sinica, 2024, 44(6): 237-245. [17] NABAVI P, YUKSEL M. Performance analysis of air-to-water optical wireless communication using spads[C]//2019 IEEE Global Communications Conference (GLOBECOM). Waikoloa, USA: IEEE, 2019: 1-6. [18] SANGEETHA R S, AWASTHI R L, SANTHANAKRISHNAN T. Design and analysis of a laser communication link between an underwater body and an air platform[C]//2016 International conference on next generation intelligent systems(ICNGIS). Kottayam, India: IEEE, 2016: 1-5. [19] CHEN Y, KONG M, ALI T, et al. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 2017, 25(13): 14760-65. doi: 10.1364/OE.25.014760 [20] TSAI W S, LI C Y, LU H H, et al. 256 Gb/s four-channel SDM-based PAM4 FSO-UWOC convergent system[J]. IEEE Photonics Journal, 2019, 11(2): 7902008. [21] TSAI W S, LU H H, WU H W, et al. 500 Gb/s PAM4 FSO-UWOC convergent system with a R/G/B five-wavelength polarization-multiplexing scheme[J]. IEEE Access, 2020, 8: 16913-21. doi: 10.1109/ACCESS.2020.2967856 [22] SHAO Y, DENG R, HE J, et al. Real-time 2.2-Gb/s water-air OFDM-OWC system with low-complexity transmitter-side DSP[J]. Journal of Lightwave Technology, 2020, 38(20): 5668-75. doi: 10.1109/JLT.2020.3001864 [23] LIN T, GONG C, LUO J, et al. Dynamic optical wireless communication channel characterization through air-water interface[C]//2020 IEEE/CIC International Conference on Communications in China. Chongqing, China: IEEE, 2020: 173-178. [24] LIN T, HUANG N, GONG C, et al. Preliminary characterization of coverage for water-to-air visible light communication through wavy water surface[J]. IEEE Photonics Journal, 2021, 13(1): 7901013. [25] NABAVI P, HAQ A F M S, YUKSEL M. Empirical modeling and analysis of water-to-air optical wireless communication channels[C]//2019 IEEE International Conference on Communications Workshops. Shanghai, China: IEEE, 2019: 1-6. [26] HE Z, QIN X, HE N. Refraction analysis of optical wireless channel through air-ocean interface by graphic operations[J]. Optik, 2013, 124(15): 2050-56. doi: 10.1016/j.ijleo.2012.06.034 [27] SUN X, KONG M, SHEN C, et al. On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter[J]. Optics Express, 2019, 27(14): 19635-49. doi: 10.1364/OE.27.019635 [28] YU C, CHEN X, ZHANG Z, et al. Experimental verification of diffused laser beam-based optical wireless communication through air and water channels[J]. Optics Communications, 2021, 495: 127079. doi: 10.1016/j.optcom.2021.127079 [29] ISLAM M S, YOUNIS M F. Analyzing visible light communication through air-water interface[J]. IEEE Access, 2019, 7: 123830-45. doi: 10.1109/ACCESS.2019.2938522 [30] SHAO Y, TANG X, ZHANG L, et al. On the performance of DCrT-spread-OFDM via water-air OWC system through waves[C]//2020 Opto-Electronics and Communications Conference (OECC). Taipei: IEEE, 2020. [31] SHAO Y, DI Y, CHEN L K. Adaptive loading for water-air SIMO OWC system based on the temporal and spatial properties of waves[C]//Optical Fiber Communication Conference. Washington DC, United States: Optica Publishing Group, 2021: Th5E. 2. [32] LU H H, LI C Y, HUANG X H, et al. A 400-Gb/s WDM-PAM4 OWC system through the free-space transmission with a water-air-water link[J]. Scientific Reports, 2021, 11(1): 21431. doi: 10.1038/s41598-021-01006-x [33] LIAN D, GAO Y, LIAN J. Cross-water-air optical wireless communication using orthogonal time-frequency space modulation[J]. Symmetry, 2024, 16(5): 571. doi: 10.3390/sym16050571 [34] TSAI S Y, CHANGY H, CHOW C W. Wavy water-to-air optical camera communication system using rolling shutter image sensor and long short term memory neural network[J]. Opt. Express, 2024, 32: 6814-22. [35] CARVER C J, TIAN Z, ZHANG H, et al. Amphilight: Direct air-water communication with laser light[J]. GetMobile: Mobile Computing and Communications, 2021, 24(3): 26-29. doi: 10.1145/3447853.3447862 [36] DI Y, SHAO Y, CHEN L K. Mitigation of wave-induced packet loss for water-air optical wireless communication by a tracking system[C]//2021 Optical Fiber Communications Conference and Exhibition. San Francisco, USA: IEEE, 2021. [37] GUO H, SUN Z, WANG P. Channel modeling of MI underwater communication using tri-directional coil antenna[C]//2015 IEEE Global Communications Conference. San Diego, USA: IEEE, 2015. [38] GUO H, SUN Z, ZHOU C. Practical design and implementation of metamaterial-enhanced magnetic induction communication[J]. IEEE Access, 2017, 5: 17213-29. doi: 10.1109/ACCESS.2017.2719406 [39] GUO H, OFORI A A. Joint channel and antenna modeling for magnetic induction communication in inhomogeneous media[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1457-69. doi: 10.1109/OJCOMS.2020.3026952 [40] WU H, JIANG X, XU P, et al. Efficient integration of magnetic positioning and stable communications[J]. IEEE Magnetics Letters, 2018, 9: 1-4. [41] FORGET A, RANGRAZ P, BOUSQUET J F. A model of the magneto-inductive link with relays to cross the air-water interface[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(5): 4549-63 doi: 10.1109/TAP.2024.3378837 [42] ZHANG Z, LIU E, QU X, et al. Connectivity of magnetic induction-based ad hoc networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4181-91. doi: 10.1109/TWC.2017.2693184 [43] 曹军青, 王三胜, 杨宏正, 等. 水下磁通信系统路径损耗方程研究[J]. 测试技术学报, 2017, 31(6): 531-536. doi: 10.3969/j.issn.1671-7449.2017.06.011 [44] GUO H, SUN Z, SUN J, et al. Channel modeling for metamaterial-enhanced magnetic induction communications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 5072-87. doi: 10.1109/TAP.2015.2480095 [45] GUO H, SUN Z. M2I communication: From theoretical modeling to practical design[C]//2016 IEEE International Conference on Communications. Kuala Lumpur, Malaysia: IEEE, 2016. [46] GUO H, SUN Z. Increasing the capacity of magnetic induction communication using MIMO coil-array[C]//2016 IEEE Global Communications Conference. Washington, DC, USA: IEEE, 2016. [47] WEI D, YAN L, LI X, et al. Ferrite assisted geometry-conformal magnetic induction antenna and subsea communications for AUVs[C]//2018 IEEE Global Communications Conference. Abu Dhabi, United Arab Emirates: IEEE, 2018: 1-6. [48] SUN Z, AKYILDIZ I F, KISSELEFF S, et al. Increasing the capacity of magnetic induction communications in RF-challenged environments[J]. IEEE Transactions on Communications, 2013, 61(9): 3943-52. doi: 10.1109/TCOMM.2013.071813.120600 [49] KISSELEFF S, GERSTACKER W, SCHOBER R, et al. Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints[C]//2013 IEEE Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013: 2603-08. [50] KISSELEFF S, AKYILDIZ I F, GERSTACKER W. Interference polarization in magnetic induction based wireless underground sensor networks[C]//2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications. London, UK: IEEE, 2013: 71-75. [51] LYAMSHEV L M. Optoacoustic sources of sound[J]. Soviet Physics Uspekhi, 1981, 24(12): 977. doi: 10.1070/PU1981v024n12ABEH004757 [52] 石啸松, 廉帅, 窦银萍, 等. 入射角度对激光诱导水等离子体声信号特性的影响[J]. 中国激光, 2020, 47(6): 0608001. doi: 10.3788/CJL202047.0608001SHI X S, LIAN S, DOU Y P, et al. Effect of angle of incidence on acoustic signals characteristics of laser-induced water plasma[J]. Chinese Journal of Lasers, 2020, 47(6): 0608001. doi: 10.3788/CJL202047.0608001 [53] 李鹏, 赵扬, 周志权, 等. 一种跨域的空中-水下激光致声探测技术研究[J]. 红外与激光工程, 2021, 50(5): 20200310. doi: 10.3788/IRLA20200310LI P, ZHAO Y, ZHOU Z Q, et al. Research on laser induced acoustic detection of trans-media aerial-underwater[J]. Infrared and Laser Engineering, 2021, 50(5): 20200310. doi: 10.3788/IRLA20200310 [54] 赵扬, 李鹏, 张鹏辉, 等. 基于 PSM 算法的激光致声 SAFT 水下小目标探测方法[J]. 中国激光, 2022, 49 (9): 135-146.ZHAO Y, LI P, ZHANG P H, et al. Underwater small target detection method of laser-induced acoustic SAFT based on PSM algorithm[J]. Chinese Journal of Lasers, 2022, 49(9): 135-146. [55] 廖欣, 蒋红艳, 何宁. 激光诱导声波的跳时隙水下数据传输方法[J]. 中国激光, 2022, 49(18): 104-111.LIAO X, JIANG H Y, HE N. Underwater time slot-hopping data transmission based on laser-induced acoustic waves[J]. Chinese Journal of Lasers, 2022, 49(18): 104-111. [56] MAHMUD M, YOUNIS M, CHOA F S, et al. Optical focusing-based adaptive modulation for air-to-underwater optoacoustic communication[J]. IEEE Sensors Journal, 2024, 24(6): 8596-614. doi: 10.1109/JSEN.2023.3340092 [57] ZHAO Y, CHEN Y, HUANG J, et al. Photoacoustic communication system based on detecting laser-generated sound by optical fiber underwater acoustic sensor[J]. Optics and Lasers in Engineering, 2024, 177: 108134. doi: 10.1016/j.optlaseng.2024.108134 [58] AL-Shamma'a A I, SHAW A, SAMAN S. Propagation of electromagnetic waves at MHz frequencies through seawater[J]. IEEE Transactions on Antennas and Pro- pagation, 2004, 52(11): 2843-49. doi: 10.1109/TAP.2004.834449 [59] SHAW A, AL-Shamma'a A I, WYLIE S R, et al. Experimental investigations of electromagnetic wave propagation in seawater[C]//2006 European Microwave Conference. Taipei: IEEE, 2006: 572-575. [60] CELLA U M, JOHNSTONE R, SHULEY N. Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results[C]//Proceedings of the 4th International Workshop on Underwater Networks. [S.l.]: ACM, 2009. [61] DAUTTA M, HASAN M I. Underwater vehicle communication using electromagnetic fields in shallow seas[C]//2017 International Conference on Electrical, Computer and Communication Engineering. Cox's Bazar, Bangladesh: IEEE, 2017: 38-43. [62] NAN T, LIN H, GAO Y, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8 [63] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2 [64] SINGH G, KUMAR M. Performance analysis of electromagnetic(EM) wave in sea water medium[J]. Wireless Networks, 2020, 26(3): 2125-35. doi: 10.1007/s11276-019-02054-y [65] DONG C, HE Y, LI M, et al. A portable very low frequency(VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398-402. doi: 10.1109/LAWP.2020.2968604 [66] 沈浪, 张辉, 毛飞龙, 等. 基于耦合声波导的跨域声波信息传输研究[C]//2019年全国声学大会论文集. 北京: 中国声学学会, 2019. [67] ZHOU P, JIA H, BI Y, et al. Water-air acoustic communication based on broadband impedance matching[J]. Applied Physics Letters, 2023, 123(19): 191701. doi: 10.1063/5.0168562 [68] ZHANG S C, ZHOU H T, GONG X T, et al. Discrete metasurface for extreme sound transmission through water-air interface[J]. Journal of Sound and Vibration, 2024, 575: 118269. doi: 10.1016/j.jsv.2024.118269 [69] GHADIMI P, BOLGHASI A, MOHAMMAD A F C, et al. Numerical investigation of transmission of low frequency sound through a smooth air-water interface[J]. Journal of Marine Science and Application, 2015, 14: 334-342. doi: 10.1007/s11804-015-1315-9 [70] GLUSHKOV E V, GLUSHKOVA N V, GODIN O A. The effect of anomalous transparency of the water-air interface for a volumetric sound source[J]. Acoustical Physics, 2013, 59: 6-15. doi: 10.1134/S106377101206005X [71] VOLOSHCHENKO A P, TARASOV S P. Effect of anomalous transparency of a liquid-gas interface for sound waves[J]. Acoustical Physics, 2013, 59: 163-169. doi: 10.1134/S1063771013020127 [72] VOLOSHCHENKO A P. Analysis of the anomalous transparency effect of the water-air interface[J]. Acoustical Physics, 2020, 66: 220-227. doi: 10.1134/S1063771020020141 [73] BOLGHASI A, GHADIMI P, MOHAMMAD A F C. Sound attenuation in air-water media with rough bubbly interface at low frequencies considering bubble resonance dispersion[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 4859-71. doi: 10.1007/s40430-017-0852-3 [74] GHADIMI P, MOHAMMAD A F C, BOLGHASI A. Simulation of wind-generated surface waves and effects of bubbles on scattering, transmission, and attenuation of low frequency sound at the sea surface[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 2467-86. doi: 10.1007/s40430-016-0676-6 [75] 邓羽捷, 付天晖, 王永斌, 等. 透地通信研究概况及其主流技术[J]. 舰船电子工程, 2021, 41(11): 13-17. doi: 10.3969/j.issn.1672-9730.2021.11.004 [76] 贾雨龙, 李凤霞, 陶晋宜, 等. 矿层无线透地系统中甚低频电磁波的传播特性[J]. 工矿自动化, 2015, 41(9): 31-33. [77] 郝建军, 孙晓晨. 几种透地通信技术的分析与对比[J]. 湖南科技大学学报(自然科学版), 2014, 29(1): 59-63. [78] 佚名. 低频应急通信系统[J]. 军民两用技术与产品, 2017(21): 42-43. [79] LIU Y, AN Z, WANG Q, et al. Research on intrinsic-safe through-the-earth radio communication system technology with large depth[C]//2020 12th International Conference on Communication Software and Networks. Chongqing, China: IEEE, 2020: 124-128. [80] 刘宝衡, 王永斌, 付天晖. 无线透地通信双环天线模型的研究[J]. 电子设计工程, 2021, 29(24): 130-134, 140. [81] 吕吉, 陶晋宜, 殷思雨. 无线透地通信协同式磁性天线模型的研究[J]. 煤炭技术, 2018, 37(7): 270-273.LÜ J, TAO J Y, YIN S Y, et al. Research on cooperative magnetic antenna model of wireless through-the-earth communication[J]. Coal Technology, 2018, 37(7): 270-273. [82] 刘宝衡, 付天晖, 侯文达. 无线磁感应透地通信传输距离分析[J]. 电讯技术, 2022, 62(3): 361-366. doi: 10.3969/j.issn.1001-893x.2022.03.014LIU B H, FU T H, HOU W D. Transmission distance analysis of wireless magnetic induction through-the-earth communication[J]. Telecommunication Engineering, 2022, 62(3): 361-366. doi: 10.3969/j.issn.1001-893x.2022.03.014 [83] 田文龙, 杨维. 信标模式下磁感应透地通信传输距离分析模型[J]. 中国矿业大学学报, 2018, 47(6): 1368-77.TIAN W L, YANG W. Analytical model of transmission distance for magnetic induction through-the-earth communication under the beacon mode[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1368-77. [84] WANG L, ZHOU Y, ZHOU X, et al. Performance research for quantum key distribution based on real air-water channel[C]//2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Xi’an, China: IEEE, 2018: 1898-902. [85] XU H, ZHOU Y, ZHOU X, et al. Performance analysis of air-water quantum key distribution with an irregular sea surface[J]. Optoelectronics Letters, 2018, 14: 216-219. doi: 10.1007/s11801-018-7250-7 [86] 王潋, 周媛媛, 周学军, 等. 泡沫覆盖不规则海面的空-水量子密钥分发[J]. 光学学报, 2019, 38(10): 348-356.WANG L, ZHOU Y Y, ZHOU X J, et al. Air-water quantum key distribution on irregular sea surface covered with foams[J]. Acta Optica Sinica, 2019, 38(10): 348-356. [87] 王潋, 周媛媛, 周学军, 等. 泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发[J]. 中国光学, 2019, 12(6): 1362-75. doi: 10.3788/co.20191206.1362WANG L, ZHOU Y Y, ZHOU X J, et al. Quantum key distribution based on heterogeneous air-water channels with foam-covered irregular sea surfaces[J]. Chinese Optics, 2019, 12(6): 1362-75. doi: 10.3788/co.20191206.1362 [88] CHAKRAVARTULA V, SAMIAPPAN D, KUMAR R, et al. Implementation of quantum teleportation of pho- tons across an air-water interface[J]. Optical and Qu- antum Electronics, 2020, 52: 1-10. doi: 10.1007/s11082-019-2116-1 [89] GUO Y, PENG Q, LIAO Q, et al. Trans-media continuous-variable quantum key distribution via untrusted entanglement source[J]. IEEE Photonics Journal, 2021, 13(2): 1-12. [90] PENG Q, GUO Y, LIAO Q, et al. Satellite-to-submarine quantum communication based on measurement-device-independent continuous-variable quantum key distribution[J]. Quantum Information Processing, 2022, 21(2): 61. doi: 10.1007/s11128-022-03413-z [91] WU H, LIU X, ZHANG H, et al. Performance analysis of continuous variable quantum teleportation with noiseless linear amplifier in seawater channel[J]. Symmetry, 2022, 14(5): 997. doi: 10.3390/sym14050997 [92] LI D D, SHEN Q, CHEN W, et al. Proof-of-principle demonstration of quantum key distribution with seawater channel: Towards space-to-underwater quantum communication[J]. Optics Communications, 2019, 452: 220-226. doi: 10.1016/j.optcom.2019.07.037 [93] CHENG Q H, YAN Z Q, GAO J, et al. Transmission of photonic polarization states through 55-m water: Towards air-to-sea quantum communication[J]. Photonics Research, 2019, 7(8): A40-A44. doi: 10.1364/PRJ.7.000A40 [94] BOUCHARD F, SIT A, HUFNAGEL F, et al. Quantum cryptography with twisted photons through an outdoor underwater channel[J]. Optics express, 2018, 26(17): 22563-73. doi: 10.1364/OE.26.022563 [95] RUAN X, ZHANG H, ZHAO W, et al. Security analysis of discrete-modulated continuous-variable quantum key distribution over seawater channel[J]. Applied Sciences, 2019, 9(22): 4956. doi: 10.3390/app9224956 [96] HUFNAGEL F, SIT A, BOUCHARD F, et al. Investigation of underwater quantum channels in a 30 meter flume tank using structured photons[J]. New Journal of Physics, 2020, 22(9): 093074. doi: 10.1088/1367-2630/abb688 [97] TARANTINO S, DA LIO B, COZZOLINO D, et al. Feasibility study of quantum communications in aquatic scenarios[J]. Optik, 2020, 216: 164639. doi: 10.1016/j.ijleo.2020.164639 [98] PRIETO J F, MELIS S, CEZON A, et al. Submarine navigation using neutrinos[EB/OL]. (2022-07-19)[2024-07-08]. https://doi.org/10.48550/arXiv.2207.09231. [99] TONOLINI F, ADIB F. Networking across boundaries: Enabling wireless communication through the water-air interface[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. [S. l. ]: ACM, 2018: 117-131. [100] PUSCHELL J J, GIANNARIS R J, STOTTS L. The autonomous data optical relay experiment: First two way laser communication between an aircraft and submarine[C]//NTC-92: National Telesystems Conference. Washington DC, USA: IEEE, 1992. [101] CHAI F, JOHNSON K S, CLAUSTRE H, et al. Monitoring ocean biogeochemistry with autonomous platforms[J]. Nature Reviews Earth & Environment, 2020, 1(6): 315-326. [102] DETWEILER C, DONIEC M, VASILESCU I, et al. Autonomous depth adjustment for underwater sensor networks: Design and applications[J]. IEEE/ASME Transactions on Mechatronics, 2011, 17(1): 16-24. [103] LUO H, WANG X, XU Z, et al. A software-defined multi-modal wireless sensor network for ocean monitoring[J]. International Journal of Distributed Sensor Networks, 2022, 18(1): 15501477211068389. [104] LUO H, XIE X, HAN G, et al. Multimodal acoustic-RF adaptive routing protocols for underwater wireless sensor networks[J]. IEEE Access, 2019, 7: 134954-67. doi: 10.1109/ACCESS.2019.2942060 [105] MOHAMMAD F A, JAYAKODY D N K, RIBEIRO M V. A Hybrid UVLC-RF and optical cooperative relay communication system[C]//2021 10th International Conference on Information and Automation for Sustainability. Negambo, Sri Lanka: IEEE, 2021. [106] LUO H, WU K, GONG Y J, et al. Localization for drifting restricted floating ocean sensor networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9968-81. doi: 10.1109/TVT.2016.2530145 [107] DONG Y, TANG S, ZHANG X. Effect of random sea surface on downlink underwater wireless optical communications[J]. IEEE Communications Letters, 2013, 17(11): 2164-67. doi: 10.1109/LCOMM.2013.091113.131363 [108] ZHANG H, CHENG J, WANG Z, et al. On the capacity of buoy-based MIMO systems for underwater optical wireless links with turbulence[C]//2018 IEEE International Conference on Communications. Kansas City, MO, USA: IEEE, 2018. [109] YADAV S, VATS A, AGGARWAL M, et al. Performance analysis and altitude optimization of UAV-enabled dual-hop mixed RF-UWOC system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12651-61. doi: 10.1109/TVT.2021.3118569 [110] LI S, YANG L, DA COSTA D B, et al. On the performance of RIS-assisted dual-hop mixed RF-UWOC systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 340-353. doi: 10.1109/TCCN.2021.3058670 [111] GUAN S, WANG J, JIANG C, et al. MagicNet: The maritime giant cellular network[J]. IEEE Communications Magazine, 2021, 59(3): 117-123. doi: 10.1109/MCOM.001.2000831 [112] ZHANG Y, SHANG H, ZHANG X, et al. Development and sea test results of a deep-sea tsunami warning buoy system[J]. Marine Technology Society Journal, 2019, 53(3): 6-15. doi: 10.4031/MTSJ.53.3.5 [113] CHEN H, YIN F, HUANG W, et al. Ocean surface drifting buoy system based on UAV-enabled wireless powered relay network[J]. Sensors, 2020, 20(9): 2598. doi: 10.3390/s20092598 [114] MA R, WANG R, LIU G, et al. UAV-assisted data collection for ocean monitoring networks[J]. IEEE Network, 2020, 34(6): 250-258. doi: 10.1109/MNET.011.2000168 [115] WANG Q, DAI H N, WANG Q, et al. On connectivity of UAV-assisted data acquisition for underwater internet of things[J]. IEEE Internet of Things Journal, 2020, 7(6): 5371-85. doi: 10.1109/JIOT.2020.2979691 [116] LIU L, LIAO Z, CHEN C, et al. A seabed real-time sensing system for in-situ long-term multi-parameter observation applications[J]. Sensors, 2019, 19(5): 1255. doi: 10.3390/s19051255 [117] 张歆, 童昱泽, 田志颖, 等. 基于中继传输的海-空跨界磁感应通信覆盖范围与可用带宽分析[J]. 物理学报, 2020, 69(24): 305-312. doi: 10.7498/aps.69.20200882ZHANG X, TONG Y Z, TIAN Z Y, et al. Coverage and transmission bandwidth analyses of undersea-to-air magnetic induction communication with relay transmission[J]. Acta Physica Sinica, 2020, 69(24): 305-312. doi: 10.7498/aps.69.20200882 [118] MA H, TENG J, HU T, et al. Co-communication protocol of underwater sensor networks with quantum and acoustic communication capabilities[J]. Wireless Personal Communications, 2020, 113: 337-347. doi: 10.1007/s11277-020-07192-7 [119] LIU Z, ZHANG Y, YU X, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93. doi: 10.1016/j.arcontrol.2016.04.018 [120] YANG T, JIANG Z, SUN R, et al. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7700-08. doi: 10.1109/TII.2020.2974047 [121] CHUAN X, JIANG J, WAN Z, et al. Research on localization method of acoustic beacon under cross-domain cooperation[C]//2022 3rd International Conference on Geology, Mapping and Remote Sensing. Zhoushan, China: IEEE, 2022: 417-420. [122] VAN T P, DANG C D N. Underwater searching based on AUV-ASV cooperation[C]//2022 16th International Conference on Ubiquitous Information Management and Communication. Seoul, Korea: IEEE, 2022. [123] SHAO G, MA Y, MALEKIAN R, et al. A novel cooperative platform design for coupled USV-UAV systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 4913-22. doi: 10.1109/TII.2019.2912024 [124] LI H, LI X. Distributed consensus of heterogeneous linear time-varying systems on UAVs-USVs coordination[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67(7): 1264-68. [125] YU W, LOW K H, LV C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6782-87. doi: 10.1109/TVT.2020.2991983 [126] CUTLER S. A search for the optimal file transfer protocol from surfaced UUVs to UAV relays and beyond[C]//Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX. Orlando, FL, USA: SPIE, 2018, 10635: 287-300. [127] LV Z, ZHANG J, JIN J, et al. Underwater acoustic communication quality evaluation model based on USV[J]. Shock and Vibration, 2018, 2018(Pt.3): 1-7. [128] 杨义军, 姚俊辉, 陈东升, 等. 极浅海域波浪滑翔器跨域通信实验[J]. 数字海洋与水下攻防, 2022, 5(4): 307-312. [129] 孙祥仁, 曹建, 姜言清, 等. 潜空跨域无人航行器发展现状与展望[J]. 数字海洋与水下攻防, 2021, 3(3): 78-184. [130] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021, 47 (10): 63-67. doi: 10.12267/j.issn.2096-5931.2021.10.13SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021, 47(10): 63-67. doi: 10.12267/j.issn.2096-5931.2021.10.13 [131] LU H, CHEN W, JIANG M. Deep learning aided misalignment-robust blind receiver for underwater optical communication[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1984-88. doi: 10.1109/LWC.2021.3089554