Cross-Domain Communication Buoy System Based on Optimal Communication Link Selection
-
摘要: 现有海洋浮标通信方式单一、可靠性低、丢包率高且实时性差, 无法满足海洋数据大量采集与跨域通信的需求。为了进一步加强海洋全域互联互通建设, 以多源通信为核心, 文中设计并制作了一种跨域通信浮标系统, 该系统可完成多种通信方式的切换、多源信息采集与多链路实时跨域通信。针对该系统设计了一种最优通信链路选择算法, 根据各通信模块实时信号质量进行最优通信链路的选择, 以提高通信的可靠性, 同时关闭信号质量较差的通信模块, 减少同时使用多种通信手段可能出现的系统通信大量冗余与功耗增加的问题。试验结果表明, 该系统实现了水上与水下数据的跨域传输, 多源通信设计切实可行, 各通信链路稳定可靠, 综合通信成功率达99%以上, 为海洋全域观测网和通信网的建设提供了参考。Abstract: The existing marine buoy communication mode is single, with low reliability, high packet loss rate, and poor real-time performance, which cannot meet the needs of large-scale marine data acquisition and cross-domain communication. In order to further strengthen the construction of marine global interconnection, a cross-domain communication buoy system with multi-source communication as the core was designed and manufactured. The system could complete the switching of multiple communication modes, multi-source information acquisition, and multi-link real-time cross-domain communication. An optimal communication link selection algorithm was designed for the system. According to the real-time signal quality of each communication module, the optimal communication link was selected to improve the reliability of communication. At the same time, the communication module with poor signal quality was closed to reduce the problem of large redundancy and power consumption of system communication that may occur when multiple communication methods are used at the same time. The experimental results show that the system realizes the cross-domain transmission of water surface and underwater data, and the multi-source communication design is feasible. The communication links are stable and reliable, and the comprehensive communication success rate is more than 99%. It provides a reference for the construction of a marine global observation network and communication network.
-
表 1 系统接收信息测试情况
Table 1. Test situation of receiving information of the system
序号 移动通信
发送数据
包数北斗发
送数据
包数数传电台
发送数据
包数移动通信
接收数据
包数北斗接
收数据
包数数传电台
接收数据
包数1 500 500 500 500 489 499 2 500 500 500 500 491 498 3 500 500 500 500 486 500 4 500 500 500 500 488 498 表 2 系统发送信息测试情况
Table 2. Test situation of sending information of the system
序号 移动通信
发送数据
包数北斗发
送数据
包数数传电台
发送数据
包数移动通信
接收数据
包数北斗接
收数据
包数数传电台
接收数据
包数1 500 500 500 500 488 500 2 500 500 500 500 486 496 3 500 500 500 500 490 499 4 500 500 500 500 487 497 表 3 水声通信测试情况
Table 3. Test situation of underwater acoustic communication
序号 操作台
用OFDM
调制发
送数据
包数系统用
OFDM
调制接
收数据
包数操作台用
OFDM
调制接
收数据
包数操作台用
扩频调制
发送数据
包数系统用
扩频调制
接收数据
包数操作台用
扩频调制
接收数据
包数1 500 500 500 500 500 500 2 500 500 500 500 500 500 3 500 500 500 500 500 500 4 500 500 500 500 500 500 表 4 最优通信链路选择测试情况
Table 4. Test situation of optimal communication link selection
序号 系统发
送数据
包数岸基操作
台接收数
据包数移动通信
实际接收
数据包数数传电台
实际接收
数据包数北斗实际
接收数据
包数水声(模拟)
传输数据
包数1 500 497 241 212 13 31 2 500 493 203 238 18 34 3 500 494 265 193 9 27 4 500 496 237 216 10 33 -
[1] 李忠孝, 罗荣, 王刚, 等. 基于宽频认知层叠网的海上跨域协同组网通信技术[J]. 水下无人系统学报, 2024, 32(2): 215-227.LI Z X, LUO R, WANG G, et al. Maritime cross-domain collaboration networking communication technology based on broadband cognitive stacked networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 215-227. [2] 江帆, 魏兆强, 马昕, 等. 低功耗双处理器漂流浮标系统[J]. 海洋技术学报, 2023, 42(5): 44-55.JIANG F, WEI Z Q, MA X, et al. Low power dual processor drifting buoy system[J]. Journal of Ocean Technology, 2023, 42(5): 44-55. [3] 孙海文, 王溪野, 王兆辰, 等. 海上异构无人集群协同运用发展概况及启示[J]. 水下无人系统学报, 2024, 32(2): 275-281.SUN H W, WANG X Y, WANG Z C, et al. Development overview and inspiration of collaborative application of heterogeneous unmanned clusters at sea[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 275-281. [4] 邱志明, 孟祥尧, 马焱, 等. 海上无人系统跨域协同运用与技术发展[J]. 水下无人系统学报, 2024, 32(2): 184-193.QIU Z M, MENG X Y, MA Y, et al. Cross-domain collaborative application and technology development of maritime unmanned systems[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 184-193. [5] 李沫, 郭栋, 周东红, 等. 卫星互联网支撑跨域无人集群作战[J]. 水下无人系统学报, 2024, 32(2): 208-214.LI M, GUO D, ZHOU D H, et al. Cross-domain unmanned cluster combat supported by satellite internet[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 208-214. [6] SHANG Z G, ZHANG H Y. Cross-medium communication: Utilizing relay to achieve air-sea cross-medium communication technology and applications[C]//Proceedings of the 2nd International Conference on Internet of Things, Communication and Intelligent Technology. Xuzhou, China: Springer, 2024. [7] 孙子奇. 基于北斗卫星的大型海洋浮标通信机制探究[J]. 设备管理与维修, 2022(10): 111-113.SUN Z Q. Research on communication mechanism of large ocean buoy based on BeiDou satellite[J]. Plant Maintenance Engineering, 2022(10): 111-113. [8] 庞茗文, 罗晶晶, 黄圣, 等. 基于多种通信方式的海洋浮标站海洋气象灾害预警系统设计与开发[J]. 气象水文海洋仪器, 2024, 41(1): 111-114.PANG M W, LUO J J, HUANG S, et al. Design and development of marine meteorological disaster early warning system for ocean buoy station based on multiple communication modes[J]. Meteorological, Hydrological and Marine Instruments, 2024, 41(1): 111-114. [9] MARTÍNEZ-OSUNA J F, OCAMPO-TORRES F J, GUTIÉRREZ-LOZA L, et al. Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico[J]. Measurement, 2021, 183: 109841. [10] 马凤强, 吕婷婷, 张浩. 应用于智能浮标的北斗铱星双模通信系统设计[J]. 传感器与微系统, 2021, 40(5): 107-110.MA F Q, LÜ T T, ZHANG H. Design of BeiDou and Iridium dual-mode communication system for smart float[J]. Transducer and Microsystem Technologies, 2021, 40(5): 107-110. [11] 黄思育. 基于天通卫星通信的海洋浮标监测系统设计[J]. 东莞理工学院学报, 2021, 28(1): 43-47.HUANG S Y. Design of marine buoy monitoring system based on Tiantong satellite communications[J]. Journal of Dongguan University of Technology, 2021, 28(1): 43-47. [12] 张锦灿, 王志欣, 王大宇, 等. 跨介质通信系统链路设计[C]//中国声学学会水声学分会2019年学术会议论文集. 上海: 中国声学学会水声学分会, 2019. [13] 郑思远, 李斌, 曹秀岭, 等. 跨介质水声网络试验平台设计与试验[J]. 水下无人系统学报, 2018, 26(6): 618-622.ZHENG S Y, LI B, CAO X L, et al. Design and test of a cross-media underwater acoustic network test platform[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 618-622. [14] 胡颖, 万隆君, 徐轶群. 可抛弃式水动力监测微型浮标设计[J]. 海洋技术学报, 2021, 40(1): 35-42.HU Y, WAN L J, XU Y Q. Design of disposable micro-buoy for hydrodynamic monitoring[J]. Journal of Ocean Technology, 2021, 40(1): 35-42. [15] 姜斌, 厉运周, 陈永华. 基于Linux的气象水文浮标采集系统设计及实现[J]. 海洋科学, 2021, 45(7): 95-102.JIANG B, LI Y Z, CHEN Y H. Design and implementation of a meteorological and hydrological buoy acquisition system based on Linux[J]. Marine Sciences, 2021, 45(7): 95-102. [16] SUN Y C, WU S J, CHEN Y H, et al. Disposable portable buoy for data transmission between seafloor equipment and onshore laboratories[J]. Ocean Engineering, 2024, 301: 117574. [17] 张新文, 刘同木, 周保成, 等. 基于物联网的浮标数据采集与控制系统设计[J]. 海洋科学进展, 2024, 42(1): 196-206.ZHANG X W, LIU T M, ZHOU B C, et al. Design of buoy data acquisition and control system based on Internet of things[J]. Advances in Marine Science, 2024, 42(1): 196-206. [18] 钱帆, 赵启兵, 蒋婷婷, 等. 基于5G通信与北斗短报文的近海小型浮标通信系统设计方法[J]. 兵工自动化, 2024, 43(3): 42-47.QIAN F, ZHAO Q B, JIANG T T, et al. A design method of offshore small buoy communication system based on 5G communication and BeiDou short message[J]. Ordnance Industry Automation, 2024, 43(3): 42-47. [19] YIN J W, ZHU G J, HAN X, et al. Temporal correlation and message-passing-based sparse Bayesian learning channel estimation for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2024, 49(2): 522-541. doi: 10.1109/JOE.2023.3330523 [20] LIU Y F, ZHAO Y J, GERSTOFT P, et al. Deep transfer learning-based variable Doppler underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2023, 154(1): 232-244. doi: 10.1121/10.0020147 [21] SUN D J, WU J, HONG X P, et al. Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1027-41. doi: 10.1121/10.0017116 [22] XI F B, PANG Y K, LIU G X, et al. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission[J]. Nano Energy, 2019, 61: 1-9. doi: 10.1016/j.nanoen.2019.04.026 [23] 王巍, 普湛清, 钮彪, 等. 一种水声自适应通信的信噪比估计方法[J]. 水下无人系统学报, 2022, 30(6): 768-773.WANG W, PU Z Q, NIU B, et al. A signal-to-noise ratio estimation method for underwater acoustic adaptive communication[J]. Journal of Unmanned Undersea System, 2022, 30(6): 768-773. [24] SHANG Z G, LI M, AN Y Y, et al. Data splitting method based on air-sea cross-domain gateway communication information transmission[C]//Proceedings of the 2022 IEEE International Conference on Unmanned Systems. Guangzhou, China: Institute of Electrical and Electronics Engineers Inc., 2022. [25] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021(10): 63-67.SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021(10): 63-67.