Experimental Study of Trans-Medium Communication of Millimeter-Wave Radar in Wave Tank
-
摘要: 利用毫米波雷达探测由水下设备声波激励的水面微幅波有望实现水下设备对外无线跨介质通信。水面波动效应研究对实现基于毫米波雷达微幅波探测的跨介质通信具有重要价值。针对此, 文中在波浪水槽中对二进制相移键控和二进制频移键控调制信号跨介质通信开展了实验, 测试分析了不同幅度水面波动对跨介质通信的影响, 评估了基于空间分集技术的通信性能。实验结果表明, 中等水面波动对毫米波雷达跨介质通信性能的影响最小, 基于多通道合并的空间分集技术能提升波动水面上的跨介质通信质量。文中的研究可为基于毫米波雷达微幅波探测的跨介质通信技术在波动水面实际应用提供参考。Abstract: Wireless cross-medium communication for underwater equipment may be possible by using millimeter-wave radar to detect the micro-wave vibration on the water surface excited by sound waves of underwater equipment. Studying the effect of water surface waves is of great value for achieving trans-medium communication based on micro-wave vibration detection by millimeter-wave radar. Therefore, experiments were carried out on the trans-medium communication of binary phase-shift keying(BPSK) and binary frequency-shift keying(BFSK) modulation signals in a wave tank. The influence of different water surface wave vibrations on trans-medium communication was tested and analyzed, and the communication performance based on spatial diversity technology was evaluated. The experimental results show that moderate water surface wave vibrations have the least impact on the trans-medium communication performance of millimeter-wave radar, and the spatial diversity technology based on multi-channel data merging can improve trans-medium communication performance on wavy water surfaces. The research results can provide a reference for practical applications of trans-medium communication technology based on micro-wave vibration detection by millimeter-wave radar on wavy water surfaces.
-
Key words:
- millimeter-wave radar /
- trans-medium /
- wireless communication /
- wave tank /
- micro-wave vibration
-
表 1 雷达参数列表
Table 1. Parameters of radar system
参数名称 数值 频率/GHz 77 带宽/GHz 3.06 脉冲采样点 256 脉冲周期/μs 100 脉冲数 255×256 天线波束宽度/(° ) 30, 80 表 2 不同推程下雷达数据统计表
Table 2. BFSK data statistics table at different push plate stokes
推程
/mm波高
/cmBFSK BPSK SNR
/dB莱斯
因子SNR
/dB莱斯
因子20 2 −12.1 1.8 −13.5 2.1 30 4 −2.3 6.4 −5.2 7.2 40 6 −5.5 21.1 −2.9 15.7 50 8 −5.7 3.2 −4.9 10.1 60 9 −6.5 2.8 −9.8 2.8 70 10 −7.4 3.3 −10.7 2.6 -
[1] TP S B, KUMAR S. Underwater communications[C]//2015 IEEE Underwater Technology(UT). Chennai, India: IEEE, 2015. [2] REDFORD D. Submarine: A cultural history from the great war to nuclear combat[J]. International Journal of Maritime History, 2013, 15(2): 239-241. [3] 方尔正, 李宗儒, 桂晨阳. 穿海牵天提升对潜通信保障能力—跨介质通信技术现状及展望[J]. 国防科技工业, 2022(2): 59-62. [4] ERICKSON A S, GOLDSTEIN L J. China’s future nuclear submarine force: insights from Chinese writings[J]. Naval War College Review, 2007, 60(1): 54-80. [5] BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Long-range communications at extremely low frequencies[J]. Proceedings of the IEEE, 1974, 62(3): 292-312. doi: 10.1109/PROC.1974.9426 [6] ROWE H. Extremely low frequency(ELF) communication to submarines[J]. IEEE Transactions on Communications, 1974, 22(4): 371-385. doi: 10.1109/TCOM.1974.1092211 [7] WIENER T, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607. doi: 10.1109/TCOM.1980.1094858 [8] SUN X, KONG M, SHEN C, et al. On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter[J]. Optics Express, 2019, 27(14): 19635-19649. doi: 10.1364/OE.27.019635 [9] 赵长明, 黄杰. 未来激光探潜和跨介质通信技术的发展[J]. 光学技术, 2001, 27(1): 53-56. doi: 10.3321/j.issn:1002-1582.2001.01.015ZHAO C M, HUANG J. Development of laser-submarine communication and detection technology in the future[J]. Optical Technology, 2001, 27(1): 53-56. doi: 10.3321/j.issn:1002-1582.2001.01.015 [10] 张巍. 激光跨介质通信技术的发展分析[J]. 舰船电子工程, 2014, 34(4): 4-7. [11] CHE X, WELLS I, DICKERS G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine, 2010, 48(12): 143-151. doi: 10.1109/MCOM.2010.5673085 [12] LEE M S, BOURGEOIS B S, HSIEH S T, et al. A laser sensing scheme for detection of underwater acoustic signals[C]//Conference Proceedings’88. Knoxville, TN, USA: IEEE, 1988: 253-257. [13] 张晓琳, 毛红杰, 李凯, 等. 相位解调实现低频水表面声波振幅探测[J]. 红外与激光工程, 2019, 48(5): 1-7.ZHANG X L, MAO H J, LI K, et al. Amplitude detection of low frequency water surface acoustic wave based on phase demodulation[J]. Infrared and Laser Engineering, 2019, 48(5): 1-7. [14] LAI Y, ZHOU H, ZENG Y, et al. Accuracy assessment of surface current velocities observed by OSMAR-S high-frequency radar system[J]. IEEE Journal of Oceanic Engineering, 2017, 43(4): 1068-1074. [15] WANG C J, WEN B Y, MA Z G, et al. Measurement of river surface currents with UHF FMCW radar systems[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(3): 375-386. doi: 10.1163/156939307779367350 [16] TONOLINI F, ADIB F. Networking across boundaries: enabling wireless communication through the water-air interface[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. Budapest, Hungary: ACM, 2018: 117-131. [17] TREMAIN D E, ANGELAKOS D J, ANOELAKOS D T, et al. Detection of underwater sound sources by microwave radiation reflected from the water surface[J]. Proceedings of the IEEE, 1972, 60(6): 741-742. doi: 10.1109/PROC.1972.8750 [18] ROMERO M R, NARAYANAN R M, LENZING E H, et al. Wireless underwater-to-air communications via water surface modulation and radar detection[C]//2020 Radar Sensor Technology XXIV. Bellingham, Washington, US: SPIE, 2020. [19] QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 483-492. doi: 10.1109/JOE.2021.3120373 [20] QIAN J, QU F, SU J, et al. Theoretical model and experiments of focused phased array for cross-medium communication in misaligned transmitter/receiver scenarios[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1348-1361. doi: 10.1109/JOE.2023.3263202 [21] 符晓磊, 夏伟杰, 董诗琦. 面向跨水空介质通信的雷达水表面声波提取[J]. 声学技术, 2023, 42(4): 452-461.FU X L, XIA W J, DONG S Q. Radar extraction of water surface acoustic wave for underwater-to-air communications[J]. Technical Acoustics, 2023, 42(4): 452-461. [22] LUO J, LIANG X, GUO Q, et al. A novel estimation method of water surface micro-amplitude wave frequency for cross-media communication[J]. Remote Sensing, 2022, 14(22): 5889. doi: 10.3390/rs14225889 [23] ZENG Y, SHEN S, XU Z. Water surface acoustic wave detection by a millimeter wave radar[J]. Remote Sensing, 2023, 15(16): 1-19. [24] 邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817-831. doi: 10.12000/JR23117DENG B, LI T, TANG B, et al. Feature detection of acoustically induced sea surface micro-motions with Terahertz radar[J]. Journal of Radars, 2023, 12(4): 817-831. doi: 10.12000/JR23117 [25] Zeng Y, Zhou H, Hugh R, et al. Wind speed inversion in high-frequency radar based on neural network[J]. International Journal of Antennas and Propagation, 2016, 2016(3): 1-8. [26] 张烈山. 声波激励水面微幅波的光学外差检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [27] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010. [28] MERCURI M, LORATO I R, LIU Y H, et al. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor[J]. Nature Electronics, 2019, 2(6): 252-262. doi: 10.1038/s41928-019-0258-6 [29] TEXAS Instruments. AWR2243BOOST[EB/OL]. (2024-02-05)[2024-05-30]. https://www.ti.com.cn/tool/cn/AWR2243BOOST. [30] TEPEDELENLIOGLU C, ABDI A, GIANNAKIS G B, et al. The ricean K factor: Estimation and performance analysis[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 799-810. [31] 张贤达, 保铮. 通信信号处理[M]. 北京: 国防工业出版社, 2000.