• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部敷设声学覆盖层的圆柱壳体声目标强度分析

马琪 倪世丰 耿浩 杨海滨

马琪, 倪世丰, 耿浩, 等. 局部敷设声学覆盖层的圆柱壳体声目标强度分析[J]. 水下无人系统学报, 2025, 33(1): 1-6 doi: 10.11993/j.issn.2096-3920.2024-0105
引用本文: 马琪, 倪世丰, 耿浩, 等. 局部敷设声学覆盖层的圆柱壳体声目标强度分析[J]. 水下无人系统学报, 2025, 33(1): 1-6 doi: 10.11993/j.issn.2096-3920.2024-0105
MA Qi, NI Shifeng, GENG Hao, YANG Haibin. Investigation of acoustic target strength of a cylindrical shell partially coated with anechoic layers[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0105
Citation: MA Qi, NI Shifeng, GENG Hao, YANG Haibin. Investigation of acoustic target strength of a cylindrical shell partially coated with anechoic layers[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0105

局部敷设声学覆盖层的圆柱壳体声目标强度分析

doi: 10.11993/j.issn.2096-3920.2024-0105
详细信息
    作者简介:

    马琪:马 琪(1976-), 男, 高级工程师, 主要研究方向为水中兵器综合性能评估与监造

  • 中图分类号: U668.5; TJ630

Investigation of acoustic target strength of a cylindrical shell partially coated with anechoic layers

  • 摘要: 水下装备主要壳体构型为圆柱壳体结构, 为研究局部敷设声学覆盖层的圆柱壳体声目标强度特性, 以内嵌横向柱形空腔结构的声学覆盖层为分析对象, 基于Kirchhoff-Helmholtz散射积分公式, 通过柱面微元的二维近似及轴向积分, 建立了局部敷设声学覆盖层有限圆柱壳体声目标强度的降维分析方法, 大幅降低计算复杂度。利用该方法, 进一步分析了声学覆盖层对圆柱壳体声目标强度的控制规律。结果表明, 在局部敷设情况下, 覆盖层的本体吸声, 覆盖层与壳体的耦合共振, 以及不同区域之间的散射波相消干涉等效应均可显著降低壳体声目标强度。通过敷设区域的调控, 可获得吸声效应以外的声目标强度控制效果, 为覆盖层工程应用设计提供有益参考。

     

  • 图  1  局部敷设声学覆盖层圆柱壳体模型

    Figure  1.  Model of a finite cylindrical shell partially coated with anechoic layers

    图  2  圆柱壳体模型声目标强度(三维模型与降维模型计算结果比较)

    Figure  2.  Results of 3D and 2D models for computing the acoustic target strength of a finite cylindrical shell

    图  3  声学覆盖层的吸声系数$\alpha $与反射强度$10\log \left( {1 - \alpha } \right)$

    Figure  3.  Absorption coefficients and reflection strength of an anechoic coating

    图  4  声学覆盖层在3 950 Hz频率处的位移场及功率耗散密度分布

    Figure  4.  Displacement and power dissipation density of the anechoic layer at 3950 Hz

    图  5  橡胶基体中单个空腔的吸收截面

    Figure  5.  The absorption cross section of the single cavity in the rubber matrix

    图  6  局部敷设声学覆盖层圆柱壳体的声目标强度(考虑敷设覆盖角度分别为60°、120°和全敷设)

    Figure  6.  Acoustic target strength of the cylindrical shell partially coated with anechoic layers

    图  7  入射声波作用下局部敷设声学覆盖层壳体的吸收截面

    Figure  7.  Acoustic absorption cross-sections of the partially coated shells

    图  8  壳体瞬态散射声压分布(5 800 Hz)

    Figure  8.  Instantaneous scattered sound pressure fields of the partially coated shells at 5800 Hz

    图  9  覆盖层60°敷设情况下覆盖层边缘±5°射线(OAOB)上瞬态散射声压分布(5 800 Hz)

    Figure  9.  Instantaneous scattered sound pressure fields on the ± 5 ° rays from the edge of the coating (OA and OB ) for the case of $\psi $=60°

  • [1] OBERST H. Technical aspects of sound[M]. Amsterdam: Elsevier, 1957: 287-327.
    [2] MEYER E, BRENDEL K, TAMM K. Pulsation oscillations of cavities in rubber[J]. Journal of the Acoustical Society of America, 1958, 30(12): 1116-1120. doi: 10.1121/1.1909475
    [3] GAUNAURD G C. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. Journal of the Acoustical Society of America, 1977, 62(2): 298-307. doi: 10.1121/1.381528
    [4] HLADKY-HENNION A, DECARPIGNY J. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: application to Alberich anechoic coatings[J]. Journal of the Acoustical Society of America, 1991, 90(6): 3356-3367. doi: 10.1121/1.401395
    [5] IVANSSON S M. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes[J]. The Journal of the Acoustical Society of America, 2008, 124(4): 1974-1984. doi: 10.1121/1.2967840
    [6] IVANSSON S M. Anechoic coatings obtained from two-and three-dimensional monopole resonance diffraction gratings[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 2622-2637. doi: 10.1121/1.3689852
    [7] 谭红波, 赵洪, 徐海亭. 有限元法分析空腔周期分布粘弹性层的声特性[J]. 声学学报, 2003, 28(3): 277-282. doi: 10.3321/j.issn:0371-0025.2003.03.015

    TAN H B, ZHAO H, XU H T. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. Acta Acustica, 2003, 28(3): 277-282. doi: 10.3321/j.issn:0371-0025.2003.03.015
    [8] WEN J H, ZHAO H G, LV L M, et al. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials[J]. The Journal of the Acoustical Society of America, 2011, 130: 1201-1208. doi: 10.1121/1.3621074
    [9] YANG H B, LI Y, ZHAO H G, et al. Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design[J]. Chinese Physics B, 2014, 23(10): 104304. doi: 10.1088/1674-1056/23/10/104304
    [10] QU S, GAO N, TINEL A, et al. Underwater metamaterial absorber with impedance-matched composite[J]. Science Advances, 2022, 8(20): m4206. doi: 10.1126/sciadv.abm4206
    [11] DONG H, ZHAO S, OUDICH M, ET al. Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption[J]. Physical Review Applied, 2022, 17(4): 44013. doi: 10.1103/PhysRevApplied.17.044013
    [12] KE Y, ZHANG L, ZHAO X, et al. An equivalent method for predicting acoustic scattering of coated shell using identified viscoelastic parameters of anechoic coating[J]. Applied Acoustics, 2021, 179: 108071. doi: 10.1016/j.apacoust.2021.108071
    [13] ZAMPOLLI M, TESEI A, JENSEN F B, et al. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects[J]. The Journal of the Acoustical Society of America, 2007, 122(3): 1472-1485. doi: 10.1121/1.2764471
    [14] ABAWI A T. Kirchhoff scattering from non-penetrable targets modeled as an assembly of triangular facets[J]. The Journal of the Acoustical Society of America, 2016, 140(3): 1878-1886. doi: 10.1121/1.4962735
    [15] 汤渭霖, 范军, 马忠成. 水中目标声散射[M]. 北京: 科学出版社, 2018: 220-227.
    [16] 加林, 陶猛. 敷设吸声覆盖层复杂目标的目标强度计算[J]. 噪声与振动控制, 2023, 43(6): 57-61.

    JIA L, TAO M. Calculation of target intensity for laying complex targets of sound absorbing overlay[J]. Noise and Vibration Control, 2023, 43(6): 57-61.
    [17] 曹浩, 樊书宏, 周晶. 基于板块元法的鱼雷声散射特性分析[J]. 水下无人系统学报, 2022, 30(2): 184-189.

    CAO H, FAN S H, ZHOU J. Analysis of acoustic scattering characteristics of a torpedo based on planar elements method[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 184-189.
    [18] 薛亚强, 彭子龙, 俞强, 等. 基于Kirchhoff近似与曲面三角形网格的水下目标声散射特性分析[J]. 兵工学报, 2023, 44(8): 2424-2431.

    XUE Y Q, PENG Z L, YU Q, et al. Analysis of acoustic scattering characteristics of underwater targets based on Kirchhoff approximation and curved triangular mesh[J]. Acta Armamentarii, 2023, 44(8): 2424-2431.
    [19] JUNGER M C, FEIT D. Sound, structures, and their interaction[M]. 2nd ed. Cambridge: The MIT Press, 1987: 82-83.
    [20] NORRIS A, VASUDEVAN N. Acoustic wave scattering from thin shell structures[J]. The Journal of the Acoustical Society of America, 1992, 92(6): 3320-3336. doi: 10.1121/1.404182
  • 加载中
图(9)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-07-19
  • 录用日期:  2024-08-06
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回
    服务号
    订阅号