• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的水下声通信综述

周萍 贾晗 杨军

周萍, 贾晗, 杨军. 基于超材料的水下声通信综述[J]. 水下无人系统学报, 2024, 32(4): 1-10 doi: 10.11993/j.issn.2096-3920.2024-0103
引用本文: 周萍, 贾晗, 杨军. 基于超材料的水下声通信综述[J]. 水下无人系统学报, 2024, 32(4): 1-10 doi: 10.11993/j.issn.2096-3920.2024-0103
ZHOU Ping, JIA Han, YANG Jun. Review of Underwater Acoustic Communication based on Metamaterials[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0103
Citation: ZHOU Ping, JIA Han, YANG Jun. Review of Underwater Acoustic Communication based on Metamaterials[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0103

基于超材料的水下声通信综述

doi: 10.11993/j.issn.2096-3920.2024-0103
详细信息
    作者简介:

    周萍:周 萍(1996-), 女, 在读博士, 主要研究方向为基于超材料的水下声学器件设计

  • 中图分类号: TN911.5; TB567; P754.5

Review of Underwater Acoustic Communication based on Metamaterials

  • 摘要: 随着海洋探测中信息量的快速增长, 如何实现高效的水下声通信成为重要议题。近年来, 声学超材料作为一种新型人工复合材料, 能够凭借强大的声学参数调控能力突破传统材料功能极限, 在水下探测、目标识别、成像、导航和通信等领域展现出了广阔的应用前景。本文综述了利用超材料实现水下声学通信的研究进展, 主要包括基于声轨道角动量的多路复用通信、基于声学超表面的波束操控实现的特定发射和接收端间的水下声通信及跨介质水-气声通信, 总结了其所涉及的关键问题和技术, 并对当前基于超材料的水下声学通信所面临的挑战和前景进行了展望。

     

  • 图  1  常见声通信技术

    Figure  1.  Common acoustic communication technology

    图  2  利用五模材料超表面实现的OAM复用声通信传输与编解码原理

    Figure  2.  Transmission, encoding and decoding principle of OAM multiplexed acoustic communication using pentamode material metasurface

    图  3  基于波束操控的水声通信应用场景

    Figure  3.  Scenarios of underwater acoustic communication application based on beam steering

    图  4  基于Snell定律和广义Snell定律的反射和透射示意图

    Figure  4.  Schematic diagram of reflection and transmission based on Snell's Law and generalized Snell's Law

    图  5  基于阻抗匹配层的水-气声通信示意图

    Figure  5.  Schematic diagram of water air acoustic communication based on impedance matching layer

    图  6  基于频分复用的跨介质水-气声通信

    Figure  6.  Cross-media water-air acoustic communication based on frequency division multiplexing method

    表  1  OAM多路复用声通信实现情况

    Table  1.   Implementation of OAM multiplexed acoustic communication

    研究团队OAM生成方式解码方式复用自由度频率/Hz传输速率/(bit/s)
    加州大学伯克利分校-张翔64个换能器34个传声器扫场,
    内积算法
    OAM16 0008.0±0.4
    南京大学-程建春8个环能器单传声器测量,
    共振结构
    OAM, 相位, 幅值2 287114
    南京大学-梁彬10个换能器单传声器测量,
    共振结构
    OAM3 430686
    南京大学-刘晓峻碳纳米管热声换能器单传声器测量,
    傅里叶变换
    OAM6 000228.7
    中科院声学所-杨军五模材料单传声器测量,
    五模材料
    OAM, 相位, 幅值7 100710
    华中科技大学-祝雪丰128个换能器128个传声器扫场,
    内积算法
    OAM2 000 0008
    下载: 导出CSV

    表  2  跨介质水-气声传输实现情况

    Table  2.   Implementation of cross-media water-air acoustic communication

    研究团队 结构 频率 透射声能量增强 厚度 验证方式
    韩国延世大学-Sam 薄膜共振结构 700 Hz (可调) 24.7 dB 4.8 mm 声透射测试
    中科院化学所-黄占东 疏水材料局域气泡得到的
    共振结构
    273 Hz (可调) 23 dB 5.1 mm 声透射测试, 音乐信号传输
    中科院化学所-宋延林 疏水铝片表面附着气泡
    得到的共振结构
    9 kHz (可调) 25 dB 20 μm 声透射测试
    南京大学-梁彬 环氧树脂中嵌入空气通道
    得到的共振结构
    8 kHz (可调) 25 dB 37.25 mm 远场声聚焦测试, 涡旋声束生成
    天津大学-汪越胜 拓扑优化得到的共振结构 10.5 kHz (可调) 25.9 dB 11.4 mm 声透射测试, 声聚焦, 涡旋声束生成
    中科院声学所-杨军 宽频声学超材料 880 Hz-1760 Hz
    (可拓展)
    平均16.7 dB 336 mm 声透射测试, 图像传输,
    去除水下混响噪声
    下载: 导出CSV
  • [1] QIU T, ZHAO Z, ZHANG T, et al. Underwater internet of things in smart ocean: System architecture and open issues[J]. IEEE transactions on industrial informatics, 2019, 16(7): 4297-4307.
    [2] ZHOU H T, JIANG M, ZHU J H, et al. Underwater scattering exceptional point by metasurface with fluid-solid interaction[J]. Advanced Functional Materials, 2024: 2404282.
    [3] MICHAEL J B, GIDDENS E M, SIMONET F, et al. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J]. Journal of Computational Acoustics, 2002, 10(4): 445-464. doi: 10.1142/S0218396X02001760
    [4] LIU Y, HABIBI D, CHAI D, et al. A comprehensive review of acoustic methods for locating underground pipelines[J]. Applied sciences, 2020, 10(3): 1031. doi: 10.3390/app10031031
    [5] WILLIAMS R, ERBW C, DUNCAN A, et al. Noise from deep-sea mining may span vast ocean areas[J]. Science, 2022, 377(6602): 157-158. doi: 10.1126/science.abo2804
    [6] FRAZER L N, MERCADO E. A sonar model for humpback whale song[J]. IEEE journal of oceanic engineering, 2000, 25(1): 160-182. doi: 10.1109/48.820748
    [7] CROLL D A, CLARK C W, ACEVEDO A, et al. Only male fin whales sing loud songs[J]. Nature, 2002, 417(6891): 809-809.
    [8] LEIGHTON T G. How can humans, in air, hear sound generated underwater (and can goldfish hear their owners talking)?[J]. The Journal of the Acoustical Society of America, 2012, 131(3): 2539-2542. doi: 10.1121/1.3681137
    [9] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展[J]. 科学通报, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690

    ZHANG Y N, CHENG K A, HAO XY, et al. A review of underwater acoustic metamaterials[J]. Chinese Science Bulletin, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690
    [10] 梁彬, 程建春. 声波的“漩涡”——声学轨道角动量的产生、操控与应用[J]. 物理, 2017, 46(10): 658-668. doi: 10.7693/wl20171002

    LIANG B, CHENG J C. The 'Vortex' of sound waves——generation, control, and application of acoustic orbital angular momentum[J]. Physics, 2017, 46(10): 658-668. doi: 10.7693/wl20171002
    [11] DEMORE C E M, Yang Z, VOLOVICK A, et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams[J]. Physical review letters, 2012, 108(19): 194301. doi: 10.1103/PhysRevLett.108.194301
    [12] GSPANS S, MEYER A, BERNET S, et al. Optoacoustic generation of a helicoidal ultrasonic beam[J]. The Journal of the Acoustical Society of America, 2004, 115(3): 1142-1146. doi: 10.1121/1.1643367
    [13] EALO J L, PRIETO J C, SECO F. Airborne ultrasonic vortex generation using flexible ferroelectrets[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011, 58(8): 1651-1657. doi: 10.1109/TUFFC.2011.1992
    [14] JIANG X, LI Y, LIANG B, et al. Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 2016, 117(3): 034301. doi: 10.1103/PhysRevLett.117.034301
    [15] JIANG X, ZHAO J, LIU S, et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits[J]. Applied Physics Letters, 2016, 108(20): 203501. doi: 10.1063/1.4949337
    [16] SHI C, DUBOIS M, WANG Y, et al.High-speed acoustic communication by multiplexing orbital angular mo-mentum[J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7250-7253. doi: 10.1073/pnas.1704450114
    [17] JIANG X, LIANG B, CHENG J, et al. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing[J]. Advanced Materials, 2018, 30(18): 1800257. doi: 10.1002/adma.201800257
    [18] WU K, LIU J, DING Y, et al.Metamaterial-based real-time communication with high information density by multipath twisting of acoustic wave[J]. Nature Communications, 2022, 13(1): 5171. doi: 10.1038/s41467-022-32778-z
    [19] JIA Y, LIU Y, HU B, et al.Orbital angular momentum multiplexing in space-time thermoacoustic metasurfaces[J]. Advanced Materials, 2022, 34(29): 2202026. doi: 10.1002/adma.202202026
    [20] LI Z, QU F, WEI Y, et al.The limits of effective degrees of freedom in UCA based orbital angular momentum multiplexed communications[J]. Scientific Reports, 2020, 10(1): 5216. doi: 10.1038/s41598-020-61329-z
    [21] SUN Z, SHI Y, SUN X, et al.Underwater acoustic multiplexing communication by pentamode metasurface[J]. Journal of Physics D: Applied Physics, 2021, 54(20): 205303. doi: 10.1088/1361-6463/abe43e
    [22] TONG L, XIONG Z, SHEN Y, et al.An acoustic me-ta-skin insulator[J]. Advanced Materials, 2020, 32(37): 2002251. doi: 10.1002/adma.202002251
    [23] LI L, LIU B, GUO Z. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method[J]. The Journal of the Acoustical Society of America, 2024, 155(5): 3195-3205. doi: 10.1121/10.0025988
    [24] YU N, GENEVET P, KATS M A, et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [25] 李勇. 声学超构表面[J]. 物理, 2017, 46(11): 721-730. doi: 10.7693/wl20171102

    LI Y. Acoustic metasurface[J]. Physics, 2017, 46(11): 721-730. doi: 10.7693/wl20171102
    [26] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22).
    [27] 田野, 左淑毓, 程营, 等. 基于相位调控的超高透射声学超表面及其应用[J]. 应用声学, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013

    TIAN Y, ZUO S Y, CHENG Y, et al.The application of ultra high transmittance acoustic metasurface based on phase modulation[J]. Applied Acoustic, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013
    [28] CAO P, ZHANG Y, ZHANG S, et al.Switching acoustic propagation via underwater metasurface[J]. Physical Review Applied, 2020, 13(4): 044019. doi: 10.1103/PhysRevApplied.13.044019
    [29] FAN L, MEI J. Multifunctional waterborne acoustic metagratings: From extraordinary transmission to total and abnormal reflection[J]. Physical Review Applied, 2021, 16(4): 044029. doi: 10.1103/PhysRevApplied.16.044029
    [30] 胡博, 刘凯, 赵思缘, 等. 水下声学超表面异常折射方向调控研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042

    HU B, LIU K, ZHAO S Y, et al.Study on the direction control of anomalous refraction on underwater acoustic metasurfaces[J]. Journal of Harbin Engineering University, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042
    [31] 刘凯. 水下声学超表面的传播方向控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
    [32] PENG Y Y, YANG Z Z, ZHANG Z L, et al.Tunable acoustic metasurface based on tunable piezoelectric composite structure[J]. The Journal of the Acoustical Society of America, 2022, 151(2): 838-845. doi: 10.1121/10.0009379
    [33] SUN Z, GUO H, AKYILDIZ I F.High-data-rate long-range underwater communications via acoustic reconfigurable intelligent surfaces[J]. IEEE Communications Magazine, 2022, 60(10): 96-102. doi: 10.1109/MCOM.002.2200058
    [34] WANG H, SUN Z, GUO H, et al.Designing acoustic reconfigurable intelligent surface for underwater communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8934-8948. doi: 10.1109/TWC.2023.3267169
    [35] BOK E, PARK J J, CHOI H, et al.Metasurface for water-to-air sound transmission[J]. Physical Review Letters, 2018, 120(4): 044302. doi: 10.1103/PhysRevLett.120.044302
    [36] HUANG Z, ZHAO S, ZHANG Y, et al. Tunable fluid-type metasurface for wide-angle and multifrequency water-air acoustic transmission[J]. Research, 2021.
    [37] HUANG Z, ZHAO Z, ZHAO S, et al. Lotus metasurface for wide-angle intermediate-frequency water-air acoustic transmission[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53242-53251.
    [38] LIU J, LI Z, LIANG B, et al. Remote water-to-air favesdropping with a phase-engineered impedance matching metasurface[J]. Advanced Materials, 2023, 35(29): 2301799. doi: 10.1002/adma.202301799
    [39] ZHOU H T, ZHANG S C, ZHU T, et al.Hybrid metasurfaces for perfect transmission and customized manipulation of sound across water–air interface[J]. Advanced Science, 2023, 10(19): 2207181. doi: 10.1002/advs.202207181
    [40] ZHOU P, JIA H, BI Y, et al.Water-air acoustic commu-nication based on broadband impedance matching[J]. Applied Physics Letters, 2023, 123(19): 191701. doi: 10.1063/5.0168562
    [41] LI Z, YANG D Q, LIU S L, et al.Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers[J]. Scitifical Report, 2017, 7(1): 42863. doi: 10.1038/srep42863
    [42] DONG E, SONG Z, ZHANG Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advance, 2020, 6(44): eabb3641.
    [43] ZHANG K, MA C, HE Q, et al. Metagel with broadband tunable acoustic properties over air-water-solid ranges[J]. Advanced Functional Materials., 2019, 29(38): 1903699. doi: 10.1002/adfm.201903699
    [44] BI Y, ZHOU P, JIA Han, et al.Acoustic metafluid for inde pendent manipulation of the mass density and bulk modulus[J]. Materials & Design, 2023, 233: 112248.
    [45] FOKIN V, AMBATI M, SUN C, et al.Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302. doi: 10.1103/PhysRevB.76.144302
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-01
  • 修回日期:  2024-07-06
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    服务号
    订阅号