• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的水声通信综述

周萍 贾晗 杨军

周萍, 贾晗, 杨军. 基于超材料的水声通信综述[J]. 水下无人系统学报, 2024, 32(4): 611-620 doi: 10.11993/j.issn.2096-3920.2024-0103
引用本文: 周萍, 贾晗, 杨军. 基于超材料的水声通信综述[J]. 水下无人系统学报, 2024, 32(4): 611-620 doi: 10.11993/j.issn.2096-3920.2024-0103
ZHOU Ping, JIA Han, YANG Jun. Review of Underwater Acoustic Communication Based on Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 611-620. doi: 10.11993/j.issn.2096-3920.2024-0103
Citation: ZHOU Ping, JIA Han, YANG Jun. Review of Underwater Acoustic Communication Based on Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 611-620. doi: 10.11993/j.issn.2096-3920.2024-0103

基于超材料的水声通信综述

doi: 10.11993/j.issn.2096-3920.2024-0103
详细信息
    作者简介:

    周萍:周 萍(1996-), 女, 在读博士, 主要研究方向为基于超材料的水下声学器件设计

  • 中图分类号: TJ6; U675.7

Review of Underwater Acoustic Communication Based on Metamaterials

  • 摘要: 近年来, 声学超材料作为一种新型人工复合材料, 凭借其强大的声学参数调控能力突破传统材料功能极限, 在水下探测、目标识别、成像、导航和通信等领域展现出了广阔的应用前景。文章综述了利用超材料实现水声通信的研究进展, 主要包括基于声轨道角动量的多路复用通信、基于声学超表面的波束操控实现的特定发射和接收端间的水声通信, 以及水-空跨介质声通信, 总结了其所涉及的关键技术, 并对当前基于超材料的水声通信所面临的挑战和前景进行了展望。

     

  • 图  1  常见声通信技术

    Figure  1.  Common acoustic communication technologies

    图  2  基于五模材料超表面的OAM复用声通信传输与编解码原理

    Figure  2.  Transmission, encoding and decoding principle of OAM multiplexed acoustic communication using pentamode material metasurface

    图  3  基于波束操控的水声通信应用场景

    Figure  3.  Scenarios of underwater acoustic communication application based on beam steering

    图  4  基于Snell定律和广义Snell定律的反射和透射示意图

    Figure  4.  Schematic diagram of reflection and transmission based on Snell's Law and generalized Snell's Law

    图  5  基于阻抗匹配层的水-空声通信示意图

    Figure  5.  Schematic diagram of water-air acoustic communication based on impedance matching layer

    图  6  基于频分复用的水-空跨介质声通信

    Figure  6.  Water-air trans-medium acoustic communication based on frequency division multiplexing method

    表  1  OAM多路复用声通信实现情况

    Table  1.   Implementation of OAM multiplexed acoustic communication

    研究团队 OAM生成方式 解码方式 复用自由度 频率/Hz 传输速率/(bit/s)
    加州大学伯克利分校[16] 64个换能器 34个传声器扫场, 内积算法 OAM 16 000 8.0±0.4
    南京大学[17] 8个环能器 单传声器测量, 共振结构 OAM, 相位, 幅值 2 287 114
    南京大学[18] 10个换能器 单传声器测量, 共振结构 OAM 3 430 686
    南京大学[19] 碳纳米管热声换能器 单传声器测量, 傅里叶变换 OAM 6 000 228.7
    中国科学院声学研究所[20] 五模材料 单传声器测量, 五模材料 OAM, 相位, 幅值 7 100 710
    华中科技大学[21] 128个换能器 128个传声器扫场, 内积算法 OAM 2 000 000 8
    下载: 导出CSV

    表  2  水-空跨介质声传输实现情况

    Table  2.   Implementation of water-air trans-medium acoustic communication

    研究团队 结构 频率/HZ 透射声能量增强/dB 厚度/mm 验证方式
    延世大学[35] 薄膜共振结构 700(可调) 24.7 4.8 声透射测试
    中国科学院化学研究所[36] 疏水材料局域气泡得到的共振结构 273 (可调) 23 5.1 声透射测试, 音乐信号传输
    中国科学院化学研究所[37] 疏水铝片表面附着气泡得到的共振结构 9 ×103 (可调) 25 20×10−6 声透射测试
    南京大学[38] 环氧树脂中嵌入空气通道得到的共振结构 8 ×103(可调) 25 37.25 远场声聚焦测试, 涡旋声束生成
    天津大学[39] 拓扑优化得到的共振结构 10.5 ×103 (可调) 25.9 11.4 声透射测试, 声聚焦, 涡旋声束生成
    中科院声学所[40] 宽频声学超材料 880~1 760
    (可拓展)
    平均16.7 336 声透射测试, 图像传输, 去除水下混响噪声
    下载: 导出CSV
  • [1] QIU T, ZHAO Z, ZHANG T, et al. Underwater internet of things in smart ocean: System architecture and open issues[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4297-4307.
    [2] ZHOU H T, JIANG M, ZHU J H, et al. Underwater scattering exceptional point by metasurface with fluid-solid interaction[J]. Advanced Functional Materials, 2024: 2404282.
    [3] MICHAEL J B, GIDDENS E M, SIMONET F, et al. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J]. Journal of Computational Acoustics, 2002, 10(4): 445-464. doi: 10.1142/S0218396X02001760
    [4] LIU Y, HABIBI D, CHAI D, et al. A comprehensive review of acoustic methods for locating underground pipelines[J]. Applied Sciences, 2020, 10(3): 1031. doi: 10.3390/app10031031
    [5] WILLIAMS R, ERBW C, DUNCAN A, et al. Noise from deep-sea mining may span vast ocean areas[J]. Science, 2022, 377(6602): 157-158. doi: 10.1126/science.abo2804
    [6] FRAZER L N, MERCADO E. A sonar model for humpback whale song[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 160-182. doi: 10.1109/48.820748
    [7] CROLL D A, CLARK C W, ACEVEDO A, et al. Only male fin whales sing loud songs[J]. Nature, 2002, 417(6891): 809-809.
    [8] LEIGHTON T G. How can humans, in air, hear sound generated underwater(and can goldfish hear their owners talking)[J]. The Journal of the Acoustical Society of America, 2012, 131(3): 2539-2542. doi: 10.1121/1.3681137
    [9] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展[J]. 科学通报, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690

    ZHANG Y N, CHENG K A, HAO X Y, et al. A review of underwater acoustic metamaterials[J]. Chinese Science Bulletin, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690
    [10] 梁彬, 程建春. 声波的“漩涡”——声学轨道角动量的产生、操控与应用[J]. 物理, 2017, 46(10): 658-668. doi: 10.7693/wl20171002

    LIANG B, CHENG J C. The "Vortex" of sound waves——generation, control, and application of acoustic orbital angular momentum[J]. Physics, 2017, 46(10): 658-668. doi: 10.7693/wl20171002
    [11] DEMORE C E M, Yang Z, VOLOVICK A, et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams[J]. Physical Review Letters, 2012, 108(19): 194301. doi: 10.1103/PhysRevLett.108.194301
    [12] GSPANS S, MEYER A, BERNET S, et al. Optoacoustic generation of a helicoidal ultrasonic beam[J]. The Journal of the Acoustical Society of America, 2004, 115(3): 1142-1146. doi: 10.1121/1.1643367
    [13] EALO J L, PRIETO J C, SECO F. Airborne ultrasonic vortex generation using flexible ferroelectrets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(8): 1651-1657. doi: 10.1109/TUFFC.2011.1992
    [14] JIANG X, LI Y, LIANG B, et al. Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 2016, 117(3): 034301. doi: 10.1103/PhysRevLett.117.034301
    [15] JIANG X, ZHAO J, LIU S, et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits[J]. Applied Physics Letters, 2016, 108(20): 203501. doi: 10.1063/1.4949337
    [16] SHI C Z, DUBOIS M, WANG Y, et al. High-speed acoustic communication by multiplexing orbital angular mo-mentum[J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7250-7253. doi: 10.1073/pnas.1704450114
    [17] JIANG X, LIANG B, CHENG J, et al. Twisted acoustics: Metasurface-enabled multiplexing and demultiplexing[J]. Advanced Materials, 2018, 30(18): 1800257. doi: 10.1002/adma.201800257
    [18] WU K, LIU J, DING Y, et al. Metamaterial-based real-time communication with high information density by multipath twisting of acoustic wave[J]. Nature Communications, 2022, 13(1): 5171. doi: 10.1038/s41467-022-32778-z
    [19] JIA Y, LIU Y, HU B, et al. Orbital angular momentum multiplexing in space-time thermoacoustic metasurfaces[J]. Advanced Materials, 2022, 34(29): 2202026. doi: 10.1002/adma.202202026
    [20] SUN Z, SHI Y, SUN X, et al. Underwater acoustic multiplexing communication by pentamode metasurface[J]. Journal of Physics D: Applied Physics, 2021, 54(20): 205303. doi: 10.1088/1361-6463/abe43e
    [21] TONG L, XIONG Z, SHEN Y, et al. An acoustic me-ta-skin insulator[J]. Advanced Materials, 2020, 32(37): 2002251. doi: 10.1002/adma.202002251
    [22] LI Z, QU F, WEI Y, et al. The limits of effective degrees of freedom in UCA based orbital angular momentum multiplexed communications[J]. Scientific Reports, 2020, 10(1): 5216. doi: 10.1038/s41598-020-61329-z
    [23] LI L, LIU B, GUO Z. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method[J]. The Journal of the Acoustical Society of America, 2024, 155(5): 3195-3205. doi: 10.1121/10.0025988
    [24] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [25] 李勇. 声学超构表面[J]. 物理, 2017, 46(11): 721-730. doi: 10.7693/wl20171102

    LI Y. Acoustic metasurface[J]. Physics, 2017, 46(11): 721-730. doi: 10.7693/wl20171102
    [26] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22): 221906.
    [27] 田野, 左淑毓, 程营, 等. 基于相位调控的超高透射声学超表面及其应用[J]. 应用声学, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013

    TIAN Y, ZUO S Y, CHENG Y, et al. The application of ultra high transmittance acoustic metasurface based on phase modulation[J]. Applied Acoustic, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013
    [28] CAO P, ZHANG Y, ZHANG S, et al. Switching acoustic propagation via underwater metasurface[J]. Physical Review Applied, 2020, 13(4): 044019. doi: 10.1103/PhysRevApplied.13.044019
    [29] FAN L, MEI J. Multifunctional waterborne acoustic metagratings: From extraordinary transmission to total and abnormal reflection[J]. Physical Review Applied, 2021, 16(4): 044029. doi: 10.1103/PhysRevApplied.16.044029
    [30] 胡博, 刘凯, 赵思缘, 等. 水下声学超表面异常折射方向调控研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042

    HU B, LIU K, ZHAO S Y, et al. Study on the direction control of anomalous refraction on underwater acoustic metasurfaces[J]. Journal of Harbin Engineering University, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042
    [31] 刘凯. 水下声学超表面的传播方向控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
    [32] PENG Y Y, YANG Z Z, ZHANG Z L, et al. Tunable acoustic metasurface based on tunable piezoelectric composite structure[J]. The Journal of the Acoustical Society of America, 2022, 151(2): 838-845. doi: 10.1121/10.0009379
    [33] SUN Z, GUO H, AKYILDIZ I F. High-data-rate long-range underwater communications via acoustic reconfigurable intelligent surfaces[J]. IEEE Communications Magazine, 2022, 60(10): 96-102. doi: 10.1109/MCOM.002.2200058
    [34] WANG H, SUN Z, GUO H, et al. Designing acoustic reconfigurable intelligent surface for underwater communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8934-8948. doi: 10.1109/TWC.2023.3267169
    [35] BOK E, PARK J J, CHOI H, et al. Metasurface for water-to-air sound transmission[J]. Physical Review Letters, 2018, 120(4): 044302. doi: 10.1103/PhysRevLett.120.044302
    [36] HUANG Z, ZHAO S, ZHANG Y, et al. Tunable fluid-type metasurface for wide-angle and multifrequency water-air acoustic transmission[J]. Research, 2021: 9757943.
    [37] HUANG Z, ZHAO Z, ZHAO S, et al. Lotus metasurface for wide-angle intermediate-frequency water-air acoustic transmission[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53242-53251.
    [38] LIU J, LI Z, LIANG B, et al. Remote water-to-air favesdropping with a phase-engineered impedance matching metasurface[J]. Advanced Materials, 2023, 35(29): 2301799. doi: 10.1002/adma.202301799
    [39] ZHOU H T, ZHANG S C, ZHU T, et al. Hybrid metasurfaces for perfect transmission and customized manipulation of sound across water–air interface[J]. Advanced Science, 2023, 10(19): 2207181. doi: 10.1002/advs.202207181
    [40] ZHOU P, JIA H, BI Y, et al. Water-air acoustic commu-nication based on broadband impedance matching[J]. Applied Physics Letters, 2023, 123(19): 191701. doi: 10.1063/5.0168562
    [41] LI Z, YANG D Q, LIU S L, et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers[J]. Scitifical Report, 2017, 7(1): 42863. doi: 10.1038/srep42863
    [42] DONG E, SONG Z, ZHANG Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advance, 2020, 6(44): eabb3641.
    [43] ZHANG K, MA C, HE Q, et al. Metagel with broadband tunable acoustic properties over air-water-solid ranges[J]. Advanced Functional Materials, 2019, 29(38): 1903699. doi: 10.1002/adfm.201903699
    [44] BI Y, ZHOU P, JIA H, et al. Acoustic metafluid for inde pendent manipulation of the mass density and bulk modulus[J]. Materials & Design, 2023, 233: 112248.
    [45] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302. doi: 10.1103/PhysRevB.76.144302
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  77
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-01
  • 修回日期:  2024-07-06
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    服务号
    订阅号