Review of Underwater Acoustic Communication Based on Metamaterials
-
摘要: 近年来, 声学超材料作为一种新型人工复合材料, 凭借其强大的声学参数调控能力突破传统材料功能极限, 在水下探测、目标识别、成像、导航和通信等领域展现出了广阔的应用前景。文章综述了利用超材料实现水声通信的研究进展, 主要包括基于声轨道角动量的多路复用通信、基于声学超表面的波束操控实现的特定发射和接收端间的水声通信, 以及水-空跨介质声通信, 总结了其所涉及的关键技术, 并对当前基于超材料的水声通信所面临的挑战和前景进行了展望。Abstract: In recent years, acoustic metamaterials, as a sort of novel artificial composite materials, have demonstrated the ability to surpass the limitations of traditional materials through their exceptional acoustic parameter manipulation capabilities. Thus, acoustic metamaterials have shown promising applications in numerous areas such as underwater detection, underwater target identification, acoustic imaging, navigation, and underwater communication. The advancements in metamaterial-based underwater acoustic communication were reviewed, focusing primarily on multiplex communication based on acoustic orbital angular momentum, underwater acoustic communication between specific transmitter and receiver based on beam steering of acoustic metasurface, and water-air trans-medium acoustic communication. The key technologies were summarized, and the current challenges and future prospects of metamaterial-based underwater acoustic communication were outlined.
-
表 1 OAM多路复用声通信实现情况
Table 1. Implementation of OAM multiplexed acoustic communication
研究团队 OAM生成方式 解码方式 复用自由度 频率/Hz 传输速率/(bit/s) 加州大学伯克利分校[16] 64个换能器 34个传声器扫场, 内积算法 OAM 16 000 8.0±0.4 南京大学[17] 8个环能器 单传声器测量, 共振结构 OAM, 相位, 幅值 2 287 114 南京大学[18] 10个换能器 单传声器测量, 共振结构 OAM 3 430 686 南京大学[19] 碳纳米管热声换能器 单传声器测量, 傅里叶变换 OAM 6 000 228.7 中国科学院声学研究所[20] 五模材料 单传声器测量, 五模材料 OAM, 相位, 幅值 7 100 710 华中科技大学[21] 128个换能器 128个传声器扫场, 内积算法 OAM 2 000 000 8 表 2 水-空跨介质声传输实现情况
Table 2. Implementation of water-air trans-medium acoustic communication
研究团队 结构 频率/HZ 透射声能量增强/dB 厚度/mm 验证方式 延世大学[35] 薄膜共振结构 700(可调) 24.7 4.8 声透射测试 中国科学院化学研究所[36] 疏水材料局域气泡得到的共振结构 273 (可调) 23 5.1 声透射测试, 音乐信号传输 中国科学院化学研究所[37] 疏水铝片表面附着气泡得到的共振结构 9 ×103 (可调) 25 20×10−6 声透射测试 南京大学[38] 环氧树脂中嵌入空气通道得到的共振结构 8 ×103(可调) 25 37.25 远场声聚焦测试, 涡旋声束生成 天津大学[39] 拓扑优化得到的共振结构 10.5 ×103 (可调) 25.9 11.4 声透射测试, 声聚焦, 涡旋声束生成 中科院声学所[40] 宽频声学超材料 880~1 760
(可拓展)平均16.7 336 声透射测试, 图像传输, 去除水下混响噪声 -
[1] QIU T, ZHAO Z, ZHANG T, et al. Underwater internet of things in smart ocean: System architecture and open issues[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4297-4307. [2] ZHOU H T, JIANG M, ZHU J H, et al. Underwater scattering exceptional point by metasurface with fluid-solid interaction[J]. Advanced Functional Materials, 2024: 2404282. [3] MICHAEL J B, GIDDENS E M, SIMONET F, et al. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J]. Journal of Computational Acoustics, 2002, 10(4): 445-464. doi: 10.1142/S0218396X02001760 [4] LIU Y, HABIBI D, CHAI D, et al. A comprehensive review of acoustic methods for locating underground pipelines[J]. Applied Sciences, 2020, 10(3): 1031. doi: 10.3390/app10031031 [5] WILLIAMS R, ERBW C, DUNCAN A, et al. Noise from deep-sea mining may span vast ocean areas[J]. Science, 2022, 377(6602): 157-158. doi: 10.1126/science.abo2804 [6] FRAZER L N, MERCADO E. A sonar model for humpback whale song[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 160-182. doi: 10.1109/48.820748 [7] CROLL D A, CLARK C W, ACEVEDO A, et al. Only male fin whales sing loud songs[J]. Nature, 2002, 417(6891): 809-809. [8] LEIGHTON T G. How can humans, in air, hear sound generated underwater(and can goldfish hear their owners talking)[J]. The Journal of the Acoustical Society of America, 2012, 131(3): 2539-2542. doi: 10.1121/1.3681137 [9] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展[J]. 科学通报, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690ZHANG Y N, CHENG K A, HAO X Y, et al. A review of underwater acoustic metamaterials[J]. Chinese Science Bulletin, 2020, 65(15): 1396-1410. doi: 10.1360/TB-2019-0690 [10] 梁彬, 程建春. 声波的“漩涡”——声学轨道角动量的产生、操控与应用[J]. 物理, 2017, 46(10): 658-668. doi: 10.7693/wl20171002LIANG B, CHENG J C. The "Vortex" of sound waves——generation, control, and application of acoustic orbital angular momentum[J]. Physics, 2017, 46(10): 658-668. doi: 10.7693/wl20171002 [11] DEMORE C E M, Yang Z, VOLOVICK A, et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams[J]. Physical Review Letters, 2012, 108(19): 194301. doi: 10.1103/PhysRevLett.108.194301 [12] GSPANS S, MEYER A, BERNET S, et al. Optoacoustic generation of a helicoidal ultrasonic beam[J]. The Journal of the Acoustical Society of America, 2004, 115(3): 1142-1146. doi: 10.1121/1.1643367 [13] EALO J L, PRIETO J C, SECO F. Airborne ultrasonic vortex generation using flexible ferroelectrets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(8): 1651-1657. doi: 10.1109/TUFFC.2011.1992 [14] JIANG X, LI Y, LIANG B, et al. Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 2016, 117(3): 034301. doi: 10.1103/PhysRevLett.117.034301 [15] JIANG X, ZHAO J, LIU S, et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits[J]. Applied Physics Letters, 2016, 108(20): 203501. doi: 10.1063/1.4949337 [16] SHI C Z, DUBOIS M, WANG Y, et al. High-speed acoustic communication by multiplexing orbital angular mo-mentum[J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7250-7253. doi: 10.1073/pnas.1704450114 [17] JIANG X, LIANG B, CHENG J, et al. Twisted acoustics: Metasurface-enabled multiplexing and demultiplexing[J]. Advanced Materials, 2018, 30(18): 1800257. doi: 10.1002/adma.201800257 [18] WU K, LIU J, DING Y, et al. Metamaterial-based real-time communication with high information density by multipath twisting of acoustic wave[J]. Nature Communications, 2022, 13(1): 5171. doi: 10.1038/s41467-022-32778-z [19] JIA Y, LIU Y, HU B, et al. Orbital angular momentum multiplexing in space-time thermoacoustic metasurfaces[J]. Advanced Materials, 2022, 34(29): 2202026. doi: 10.1002/adma.202202026 [20] SUN Z, SHI Y, SUN X, et al. Underwater acoustic multiplexing communication by pentamode metasurface[J]. Journal of Physics D: Applied Physics, 2021, 54(20): 205303. doi: 10.1088/1361-6463/abe43e [21] TONG L, XIONG Z, SHEN Y, et al. An acoustic me-ta-skin insulator[J]. Advanced Materials, 2020, 32(37): 2002251. doi: 10.1002/adma.202002251 [22] LI Z, QU F, WEI Y, et al. The limits of effective degrees of freedom in UCA based orbital angular momentum multiplexed communications[J]. Scientific Reports, 2020, 10(1): 5216. doi: 10.1038/s41598-020-61329-z [23] LI L, LIU B, GUO Z. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method[J]. The Journal of the Acoustical Society of America, 2024, 155(5): 3195-3205. doi: 10.1121/10.0025988 [24] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713 [25] 李勇. 声学超构表面[J]. 物理, 2017, 46(11): 721-730. doi: 10.7693/wl20171102LI Y. Acoustic metasurface[J]. Physics, 2017, 46(11): 721-730. doi: 10.7693/wl20171102 [26] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22): 221906. [27] 田野, 左淑毓, 程营, 等. 基于相位调控的超高透射声学超表面及其应用[J]. 应用声学, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013TIAN Y, ZUO S Y, CHENG Y, et al. The application of ultra high transmittance acoustic metasurface based on phase modulation[J]. Applied Acoustic, 2018, 37(5): 691-700. doi: 10.11684/j.issn.1000-310X.2018.05.013 [28] CAO P, ZHANG Y, ZHANG S, et al. Switching acoustic propagation via underwater metasurface[J]. Physical Review Applied, 2020, 13(4): 044019. doi: 10.1103/PhysRevApplied.13.044019 [29] FAN L, MEI J. Multifunctional waterborne acoustic metagratings: From extraordinary transmission to total and abnormal reflection[J]. Physical Review Applied, 2021, 16(4): 044029. doi: 10.1103/PhysRevApplied.16.044029 [30] 胡博, 刘凯, 赵思缘, 等. 水下声学超表面异常折射方向调控研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042HU B, LIU K, ZHAO S Y, et al. Study on the direction control of anomalous refraction on underwater acoustic metasurfaces[J]. Journal of Harbin Engineering University, 2024, 45(1): 93-102. doi: 10.11990/jheu.202206042 [31] 刘凯. 水下声学超表面的传播方向控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2022. [32] PENG Y Y, YANG Z Z, ZHANG Z L, et al. Tunable acoustic metasurface based on tunable piezoelectric composite structure[J]. The Journal of the Acoustical Society of America, 2022, 151(2): 838-845. doi: 10.1121/10.0009379 [33] SUN Z, GUO H, AKYILDIZ I F. High-data-rate long-range underwater communications via acoustic reconfigurable intelligent surfaces[J]. IEEE Communications Magazine, 2022, 60(10): 96-102. doi: 10.1109/MCOM.002.2200058 [34] WANG H, SUN Z, GUO H, et al. Designing acoustic reconfigurable intelligent surface for underwater communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8934-8948. doi: 10.1109/TWC.2023.3267169 [35] BOK E, PARK J J, CHOI H, et al. Metasurface for water-to-air sound transmission[J]. Physical Review Letters, 2018, 120(4): 044302. doi: 10.1103/PhysRevLett.120.044302 [36] HUANG Z, ZHAO S, ZHANG Y, et al. Tunable fluid-type metasurface for wide-angle and multifrequency water-air acoustic transmission[J]. Research, 2021: 9757943. [37] HUANG Z, ZHAO Z, ZHAO S, et al. Lotus metasurface for wide-angle intermediate-frequency water-air acoustic transmission[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53242-53251. [38] LIU J, LI Z, LIANG B, et al. Remote water-to-air favesdropping with a phase-engineered impedance matching metasurface[J]. Advanced Materials, 2023, 35(29): 2301799. doi: 10.1002/adma.202301799 [39] ZHOU H T, ZHANG S C, ZHU T, et al. Hybrid metasurfaces for perfect transmission and customized manipulation of sound across water–air interface[J]. Advanced Science, 2023, 10(19): 2207181. doi: 10.1002/advs.202207181 [40] ZHOU P, JIA H, BI Y, et al. Water-air acoustic commu-nication based on broadband impedance matching[J]. Applied Physics Letters, 2023, 123(19): 191701. doi: 10.1063/5.0168562 [41] LI Z, YANG D Q, LIU S L, et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers[J]. Scitifical Report, 2017, 7(1): 42863. doi: 10.1038/srep42863 [42] DONG E, SONG Z, ZHANG Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advance, 2020, 6(44): eabb3641. [43] ZHANG K, MA C, HE Q, et al. Metagel with broadband tunable acoustic properties over air-water-solid ranges[J]. Advanced Functional Materials, 2019, 29(38): 1903699. doi: 10.1002/adfm.201903699 [44] BI Y, ZHOU P, JIA H, et al. Acoustic metafluid for inde pendent manipulation of the mass density and bulk modulus[J]. Materials & Design, 2023, 233: 112248. [45] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302. doi: 10.1103/PhysRevB.76.144302