• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极地甚低频电磁波跨冰层传播衰减特性分析

张嘉雨 冯士民 窦高奇 代晨鹏 王臻 王颢

张嘉雨, 冯士民, 窦高奇, 等. 极地甚低频电磁波跨冰层传播衰减特性分析[J]. 水下无人系统学报, 2024, 32(5): 855-863 doi: 10.11993/j.issn.2096-3920.2024-0100
引用本文: 张嘉雨, 冯士民, 窦高奇, 等. 极地甚低频电磁波跨冰层传播衰减特性分析[J]. 水下无人系统学报, 2024, 32(5): 855-863 doi: 10.11993/j.issn.2096-3920.2024-0100
ZHANG Jiayu, FENG Shimin, DOU Gaoqi, DAI Chenpeng, WANG Zhen, WANG Hao. Analysis of Attenuation Characteristics of Polar VLF Electromagnetic Wave Propagation across Ice Layer[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 855-863. doi: 10.11993/j.issn.2096-3920.2024-0100
Citation: ZHANG Jiayu, FENG Shimin, DOU Gaoqi, DAI Chenpeng, WANG Zhen, WANG Hao. Analysis of Attenuation Characteristics of Polar VLF Electromagnetic Wave Propagation across Ice Layer[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 855-863. doi: 10.11993/j.issn.2096-3920.2024-0100

极地甚低频电磁波跨冰层传播衰减特性分析

doi: 10.11993/j.issn.2096-3920.2024-0100
基金项目: 国家自然科学基金项目资助(61871473); 海军工程大学自主研发计划项目(2023503090).
详细信息
    作者简介:

    张嘉雨(2000-), 男, 在读博士, 主要研究方向为水下通信、低频通信

  • 中图分类号: TJ6; U675.7

Analysis of Attenuation Characteristics of Polar VLF Electromagnetic Wave Propagation across Ice Layer

  • 摘要: 甚低频(VLF)电磁波由于其能够穿透海水的特性, 成为在极地海洋环境下进行跨介质通信的可靠方法。文中针对极地VLF电磁波在跨冰层传播问题, 建立了基于传输矩阵的多层介质传播模型。通过二端口网络等效电路方法, 研究了VLF电磁波在空气-冰层-海水中的衰减特性以及入射角度的影响。通过结合仿真和实地实验数据, 首次量化了在冰层中的VLF电磁波的场强衰减规律, 揭示了每米冰层厚度衰减不足1 dB的重要发现。同时评估了海冰对极地VLF通信的影响, 结果表明海冰对VLF电磁波的损耗较小, 不是影响VLF通信的主要因素。

     

  • 图  1  电磁波跨空-冰-海3层介质模型结构

    Figure  1.  Model structure of electromagnetic wave cross-air-ice-sea three layer medium

    图  2  3 kHz、30 kHz平面电磁波入射海水与海冰的入射角和反射角关系

    Figure  2.  Relation between incidence angle and reflection angle of 3 kHz and 30 kHz planar electromagnetic wave incident seawater and sea ice

    图  3  VLF电磁波入射海水和海冰平均每米衰减情况

    Figure  3.  Average attenuation per meter of VLF electromagnetic wave incident seawater and sea ice

    图  4  电磁波的等效电路形式

    Figure  4.  Equivalent circuit form of electromagnetic wave

    图  5  空-冰-海模型结构仿真示意图

    Figure  5.  Schematic diagram of the structural simulation of the air-ice-sea model

    图  6  18.2 kHz电磁波在空-冰-海结构中电磁场随垂直距离变化情况

    Figure  6.  Electromagnetic field variation of 18.2 kHz electro- magnetic waves with vertical distance in an air-ice-sea structure

    图  7  主要VLF长波台跨介质归一化电场强度随垂直距离变化情况

    Figure  7.  Variation of the cross-medium normalized electric field intensity of the main VLF long-wave stations with vertical distance

    图  8  主要VLF长波台跨介质归一化磁场强度随垂直距离变化情况

    Figure  8.  Variation of the cross-medium normalized magnetic field intensity of the main VLF long-wave stations with vertical distance

    图  9  海底对海冰和海水磁场强度影响情况

    Figure  9.  Effecf of the seabed on the magnetic field intensity of sea ice and seawater

    图  10  实验原理与实验现场

    Figure  10.  Experimental principle and site

    图  11  数据采集设备

    Figure  11.  Data acquisition equipment

    图  12  (a) 设备全局接收图 (b) 设备局部接收图 (c) 0~400 kHz瀑布图数据记录图

    Figure  12.  (a) Device global reception diagram (b) Device local reception diagram (c) 0-400 kHz waterfall diagram data recording diagram

    图  13  (a) 冰层上方数据记录图 (b) 冰层下方数据记录图 (c) 海水1.2 m处数据记录图

    Figure  13.  (a) Data record above the ice sheet (b) Data record below the ice sheet (c) Data record at 1.2 m of seawater

    图  14  实验数据记录

    Figure  14.  Experimental data recording

    图  15  部分实验过程数据记录图

    Figure  15.  Part of experimental process data recording

    图  16  长波发信台信号传播示意图

    Figure  16.  Signal propagation diagram of long wave transmitting station

    图  17  JJI台—北极黄河站信号传播示意图

    Figure  17.  Schematic diagram of signal propagation at JJI—Arctic Yellow River Station

    表  1  仿真参数

    Table  1.   Simulation parameters

    介质 $\mu $ $\sigma $/(S/m) $\varepsilon $ 厚度/m
    空气 1 1 1 无限大
    冰层 1 0.03~0.0003 3~9 1~5
    海水 1 2.5~3.33 81 无限大
    下载: 导出CSV
  • [1] 钱恒, 张韧. 北极地区潜艇破冰上浮风险评估建模与区划仿真[J]. 军事运筹与系统工程, 2020, 34(2): 66-72.

    QIAN H, ZHANG R. Risk assessment modeling and regionalization simulation of submarine ice-breaking upfloating in the Arctic[J]. Military Operations Research and Systems Engineering, 2020, 34(2): 66-72.
    [2] 黄加强. 北极航行对潜艇航行性能影响研究[J]. 舰船电子工程, 2020, 40(9): 62-66. doi: 10.3969/j.issn.1672-9730.2020.09.015

    HUANG J Q. Study on the influence of Arctic navigation on submarine navigation performance[J]. Ship Electronic Engineering, 2020, 40(9): 62-66. doi: 10.3969/j.issn.1672-9730.2020.09.015
    [3] DORVAL E C, CANADA Q C, KROUPNIK G. The Polar communications and weather(PCW) mission: A Canadian project to observe the Arctic region from a higly elliptical orbit Louis Garand[C]//16th Conference on Satellite Meteorology and Oceanography. [S.l.]: AMS, 2009.
    [4] CONCARO F, MARCHETTI M, PASIAN M. Preliminary analysis of the performance metrics for the 26 GHz band receiving channel of the snowbear project[C]//8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications(TTC). Darmstadt, Germany: IEEE, 2019.
    [5] BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2017.

    BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2017.
    [6] BASHKUEV Y, DEMBELOV M. Application of surface electromagnetic wave for wireless communication in Arctic[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.

    BASHKUEV Y, DEMBELOV M. Application of surface electromagnetic wave for wireless communication in Arctic[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.
    [7] 杨美霄, 李渊, 丁怀元, 等. 为我所短波、特高频通信发展史自豪——专家回顾电信一所短波、特高频通信发展史[J]. 电信快报: 网络与通信, 2007(3): 14-16.

    YANG M X, LI Y, DING H Y, et al. Proud of the history of shortwave and UHF communication in our company—An expert review of the history of shortwave and UHF Communication in China telecom[J]. Telecommunication Letters: Networks and Communications, 2007(3): 14-16.
    [8] 邹国良, 叶建成. 实现地球空间极地短波通信设计与仿真研究[J]. 计算机仿真, 2015, 32(5): 226-229, 269. doi: 10.3969/j.issn.1006-9348.2015.05.002

    ZOU G L, YE J C. Design and simulation of Geospatial polar shortwave communication[J]. Computer Simulation, 2015, 32(5): 226-229, 269. doi: 10.3969/j.issn.1006-9348.2015.05.002
    [9] JAHANBAKHT M, XIANG W, HANZO L, et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 904-956.

    JAHANBAKHT M, XIANG W, HANZO L, et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 904-956.
    [10] TIAN Z, ZHANG X, WEI H. A test of cross-border magnetic induction communication from water to air[C]//2020 IEEE International Conference on Signal Processing, Communications and Computing. Macau, China: IEEE, 2020.
    [11] XU H L, GU T T, ZHU Y, et al. Communication with a magnetic dipole: Near-field propagation from air to undersea[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1052-1064.

    XU H L, GU T T, ZHU Y, et al. Communication with a magnetic dipole: Near-field propagation from air to undersea[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1052-1064.
    [12] YANG M, PENG H, ZHENG K, et al. Spatial radiation field distribution of underwater VLF two-element antenna array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 1164-1169.

    YANG M, PENG H, ZHENG K, et al. Spatial radiation field distribution of underwater VLF two-element antenna array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 1164-1169.
    [13] VOLKOV M V, KALININA T S, LUNKOV A A, et al. Modeling the underwater acoustic communication under ice cover on the Arctic shelf[J]. Journal of Physics: Conference Series, 2019, 1348: 012036.

    VOLKOV M V, KALININA T S, LUNKOV A A, et al. Modeling the underwater acoustic communication under ice cover on the Arctic shelf[J]. Journal of Physics: Conference Series, 2019, 1348: 012036.
    [14] KOROCHENTSEV V, SYUE V, GOROVOY S, et al. Investigation of electromagnetic fields in the Arctic zone with uneven ice cover[J]. EPJ Web of Conferences, 2021, 254: 02008.

    KOROCHENTSEV V, SYUE V, GOROVOY S, et al. Investigation of electromagnetic fields in the Arctic zone with uneven ice cover[J]. EPJ Web of Conferences, 2021, 254: 02008.
    [15] BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.

    BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.
    [16] FIELD E C, GREIFINGER C, SCHWARTZ K. Transpolar propagation of long radio waves[J]. Journal of Geophysical Research, 1971, 77(7): 1264-1278.
    [17] MCNEILL D, HOEKSTRA P. In-situ measurements on the conductivity and surface impedance of sea ice at VLF[J]. Radio Science, 2016, 8(1): 23-30.
    [18] 叶礼裕, 王超, 郭春雨, 等. 潜艇破冰上浮近场动力学模型[J]. 中国舰船研究, 2018, 13(2): 51-59. doi: 10.3969/j.issn.1673-3185.2018.02.007

    YE L Y, WANG C, GUO C Y, et al. Near-field dynamics model of submarine ice-breaking floating[J]. Chinese Ship Research, 2018, 13(2): 51-59. doi: 10.3969/j.issn.1673-3185.2018.02.007
    [19] 杨振凡, 马启明. 平面电磁波在介质中传播的探讨[J]. 物理, 1986(6): 385-390.

    YANG Z F, MA Q M. Discussion on planar electromagnetic wave propagation in medium[J]. Physics, 1986(6): 385-390.
    [20] 胡云. 均匀平面电磁波在多层介质中的传播特性分析[J]. 大学物理, 2013, 32(7): 22-24, 32.

    HU Y. Propagation characteristics of uniform planar electromagnetic waves in multilayer media[J]. University Physics, 2013, 32(7): 22-24, 32.
    [21] 韩再鹏. VLF波在地-电离层波导中传播的数值分析[D]. 西安: 西安电子科技大学, 2020.
    [22] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵[J]. 物理学报, 2017, 66(6): 87-97.

    WANG F, WEI B. Propagation matrix of oblique incident electromagnetic wave in stratified lossible chiral media[J]. Acta Physica Sinica, 2017, 66(6): 87-97.
    [23] 黄丽, 邱彦君. 基于光学传输矩阵法的物理电磁波传播与光学特性[J]. 粘接, 2020, 43(9): 149-152, 160.

    HUANG L, QIU Y J. Physical electromagnetic wave propagation and optical properties based on optical transmission matrix method[J]. Adhesion, 2020, 43(9): 149-152, 160.
    [24] GUO J, WANG H. Assessment and application of electromagnetic induction method to measure Arctic sea ice thickness[J]. Advances in Polar Science, 2015(26): 292-298.

    GUO J, WANG H. Assessment and application of electromagnetic induction method to measure Arctic sea ice thickness[J]. Advances in Polar Science, 2015(26): 292-298.
    [25] KHORRAMI Y, FATHI D, KHAVASI A, et al. Passive and active slab waveguide mode analysis using transfer matrix method[J]. Research Square, 2021. DOI: 10.21203/rs.3.rs-1011701/v1.

    KHORRAMI Y, FATHI D, KHAVASI A, et al. Passive and active slab waveguide mode analysis using transfer matrix method[J]. Research Square, 2021. DOI: 10.21203/rs.3.rs-1011701/v1.
    [26] LI Z Y, LIN L L. Photonic band structures solved by a plane-wave-based transfer-matrix method[J]. Physical Review E, 2003, 67(4 Pt 2): 046607.
    [27] XI-KUN J, BIN L, WEI P, et al. Research of gain of vertical cavity semiconductor optical amplifiers based on transfer matrix method[J]. Laser Technology, 2005, 29(4): 377-379.

    XI-KUN J, BIN L, WEI P, et al. Research of gain of vertical cavity semiconductor optical amplifiers based on transfer matrix method[J]. Laser Technology, 2005, 29(4): 377-379.
    [28] 罗慧, 吴微微, 刘新群, 等. 平面电磁波与多层介质交互机理研究[C]// 2014年全国军事微波技术暨太赫兹技术学术会议. 常德: 中国电子学会微波分会, 2014.
    [29] 王宏磊. 电磁波跨越海-空界面传播特性研究[D]. 西安: 西北工业大学, 2015.
    [30] 李斌, 柳超, 康颖, 等. 基于矩量法和蝴蝶交配优化算法的甚低频发射天线顶线绝缘子均压环优化设计[J]. 高压电器, 2020, 56(5): 94-100, 106.

    LI B, LIU C, KANG Y, et al. Optimal design of pressure balancing ring for top line insulator of very low frequency transmitting antenna based on moment method and butterfly mating optimization algorithm[J]. High Voltage Electrical Apparatus, 2020, 56(5): 94-100, 106.
    [31] KWOK R, ROTHROCK D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958—2008[J]. Geophysical Research Letters, 2009, 36(15): 55460004.
    [32] 沃特. 甚低频无线电工程[M]. 北京: 国防工业出版社, 1973.
    [33] TSCHUDI M, STROEVE J, STEWART J. Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns[J]. Remote Sensing, 2016, 8: 457.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  29
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 修回日期:  2024-08-15
  • 录用日期:  2024-09-09
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回
    服务号
    订阅号