Analysis of Attenuation Characteristics of Polar VLF Electromagnetic Wave Propagation across Ice Layer
-
摘要: 甚低频(VLF)电磁波由于其能够穿透海水的特性, 成为在极地海洋环境下进行跨介质通信的可靠方法。文中针对极地VLF电磁波在跨冰层传播问题, 建立了基于传输矩阵的多层介质传播模型。通过二端口网络等效电路方法, 研究了VLF电磁波在空气-冰层-海水中的衰减特性以及入射角度的影响。通过结合仿真和实地实验数据, 首次量化了在冰层中的VLF电磁波的场强衰减规律, 揭示了每米冰层厚度衰减不足1 dB的重要发现。同时评估了海冰对极地VLF通信的影响, 结果表明海冰对VLF电磁波的损耗较小, 不是影响VLF通信的主要因素。Abstract: Very low frequency(VLF) electromagnetic wave provides a reliable method for cross-medium communication in polar sea environments due to its ability to penetrate seawater. In order to solve the problem of polar VLF electromagnetic wave propagation across the ice layer, a multilayer dielectric propagation model based on the transmission matrix was established in this paper. The attenuation characteristics of VLF electromagnetic waves in air-ice layer-seawater and the influence of incident angle were studied by using the two-port network equivalent circuit method. Through simulation and field experiment data, the attenuation law of VLF electromagnetic wave field intensity in the ice layer was quantified for the first time, revealing the important discovery that the attenuation of VLF electromagnetic wave field intensity in the ice layer was less than 1 dB per meter. The effect of sea ice on VLF communication in polar regions was evaluated. The results show that sea ice had less loss on VLF electromagnetic waves and was not the main factor affecting VLF communication.
-
表 1 仿真参数
Table 1. Simulation parameters
介质 $\mu $ $\sigma $/(S/m) $\varepsilon $ 厚度/m 空气 1 1 1 无限大 冰层 1 0.03~ 0.0003 3~9 1~5 海水 1 2.5~3.33 81 无限大 -
[1] 钱恒, 张韧. 北极地区潜艇破冰上浮风险评估建模与区划仿真[J]. 军事运筹与系统工程, 2020, 34(2): 66-72.QIAN H, ZHANG R. Risk assessment modeling and regionalization simulation of submarine ice-breaking upfloating in the Arctic[J]. Military Operations Research and Systems Engineering, 2020, 34(2): 66-72. [2] 黄加强. 北极航行对潜艇航行性能影响研究[J]. 舰船电子工程, 2020, 40(9): 62-66. doi: 10.3969/j.issn.1672-9730.2020.09.015HUANG J Q. Study on the influence of Arctic navigation on submarine navigation performance[J]. Ship Electronic Engineering, 2020, 40(9): 62-66. doi: 10.3969/j.issn.1672-9730.2020.09.015 [3] DORVAL E C, CANADA Q C, KROUPNIK G. The Polar communications and weather(PCW) mission: A Canadian project to observe the Arctic region from a higly elliptical orbit Louis Garand[C]//16th Conference on Satellite Meteorology and Oceanography. [S.l.]: AMS, 2009. [4] CONCARO F, MARCHETTI M, PASIAN M. Preliminary analysis of the performance metrics for the 26 GHz band receiving channel of the snowbear project[C]//8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications(TTC). Darmstadt, Germany: IEEE, 2019. [5] BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2017.BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2017. [6] BASHKUEV Y, DEMBELOV M. Application of surface electromagnetic wave for wireless communication in Arctic[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.BASHKUEV Y, DEMBELOV M. Application of surface electromagnetic wave for wireless communication in Arctic[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016. [7] 杨美霄, 李渊, 丁怀元, 等. 为我所短波、特高频通信发展史自豪——专家回顾电信一所短波、特高频通信发展史[J]. 电信快报: 网络与通信, 2007(3): 14-16.YANG M X, LI Y, DING H Y, et al. Proud of the history of shortwave and UHF communication in our company—An expert review of the history of shortwave and UHF Communication in China telecom[J]. Telecommunication Letters: Networks and Communications, 2007(3): 14-16. [8] 邹国良, 叶建成. 实现地球空间极地短波通信设计与仿真研究[J]. 计算机仿真, 2015, 32(5): 226-229, 269. doi: 10.3969/j.issn.1006-9348.2015.05.002ZOU G L, YE J C. Design and simulation of Geospatial polar shortwave communication[J]. Computer Simulation, 2015, 32(5): 226-229, 269. doi: 10.3969/j.issn.1006-9348.2015.05.002 [9] JAHANBAKHT M, XIANG W, HANZO L, et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 904-956.JAHANBAKHT M, XIANG W, HANZO L, et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 904-956. [10] TIAN Z, ZHANG X, WEI H. A test of cross-border magnetic induction communication from water to air[C]//2020 IEEE International Conference on Signal Processing, Communications and Computing. Macau, China: IEEE, 2020. [11] XU H L, GU T T, ZHU Y, et al. Communication with a magnetic dipole: Near-field propagation from air to undersea[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1052-1064.XU H L, GU T T, ZHU Y, et al. Communication with a magnetic dipole: Near-field propagation from air to undersea[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1052-1064. [12] YANG M, PENG H, ZHENG K, et al. Spatial radiation field distribution of underwater VLF two-element antenna array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 1164-1169.YANG M, PENG H, ZHENG K, et al. Spatial radiation field distribution of underwater VLF two-element antenna array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 1164-1169. [13] VOLKOV M V, KALININA T S, LUNKOV A A, et al. Modeling the underwater acoustic communication under ice cover on the Arctic shelf[J]. Journal of Physics: Conference Series, 2019, 1348: 012036.VOLKOV M V, KALININA T S, LUNKOV A A, et al. Modeling the underwater acoustic communication under ice cover on the Arctic shelf[J]. Journal of Physics: Conference Series, 2019, 1348: 012036. [14] KOROCHENTSEV V, SYUE V, GOROVOY S, et al. Investigation of electromagnetic fields in the Arctic zone with uneven ice cover[J]. EPJ Web of Conferences, 2021, 254: 02008.KOROCHENTSEV V, SYUE V, GOROVOY S, et al. Investigation of electromagnetic fields in the Arctic zone with uneven ice cover[J]. EPJ Web of Conferences, 2021, 254: 02008. [15] BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016.BASHKUEV Y, ANGARKHAEVA L, BUYANOVA D, et al. Map of conductivity of Russian Arctic and its application for the wireless communication[C]//International Conference on Wireless Communication and Network Engineering. Beijing, China: DEStech Publications, Inc., 2016. [16] FIELD E C, GREIFINGER C, SCHWARTZ K. Transpolar propagation of long radio waves[J]. Journal of Geophysical Research, 1971, 77(7): 1264-1278. [17] MCNEILL D, HOEKSTRA P. In-situ measurements on the conductivity and surface impedance of sea ice at VLF[J]. Radio Science, 2016, 8(1): 23-30. [18] 叶礼裕, 王超, 郭春雨, 等. 潜艇破冰上浮近场动力学模型[J]. 中国舰船研究, 2018, 13(2): 51-59. doi: 10.3969/j.issn.1673-3185.2018.02.007YE L Y, WANG C, GUO C Y, et al. Near-field dynamics model of submarine ice-breaking floating[J]. Chinese Ship Research, 2018, 13(2): 51-59. doi: 10.3969/j.issn.1673-3185.2018.02.007 [19] 杨振凡, 马启明. 平面电磁波在介质中传播的探讨[J]. 物理, 1986(6): 385-390.YANG Z F, MA Q M. Discussion on planar electromagnetic wave propagation in medium[J]. Physics, 1986(6): 385-390. [20] 胡云. 均匀平面电磁波在多层介质中的传播特性分析[J]. 大学物理, 2013, 32(7): 22-24, 32.HU Y. Propagation characteristics of uniform planar electromagnetic waves in multilayer media[J]. University Physics, 2013, 32(7): 22-24, 32. [21] 韩再鹏. VLF波在地-电离层波导中传播的数值分析[D]. 西安: 西安电子科技大学, 2020. [22] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵[J]. 物理学报, 2017, 66(6): 87-97.WANG F, WEI B. Propagation matrix of oblique incident electromagnetic wave in stratified lossible chiral media[J]. Acta Physica Sinica, 2017, 66(6): 87-97. [23] 黄丽, 邱彦君. 基于光学传输矩阵法的物理电磁波传播与光学特性[J]. 粘接, 2020, 43(9): 149-152, 160.HUANG L, QIU Y J. Physical electromagnetic wave propagation and optical properties based on optical transmission matrix method[J]. Adhesion, 2020, 43(9): 149-152, 160. [24] GUO J, WANG H. Assessment and application of electromagnetic induction method to measure Arctic sea ice thickness[J]. Advances in Polar Science, 2015(26): 292-298.GUO J, WANG H. Assessment and application of electromagnetic induction method to measure Arctic sea ice thickness[J]. Advances in Polar Science, 2015(26): 292-298. [25] KHORRAMI Y, FATHI D, KHAVASI A, et al. Passive and active slab waveguide mode analysis using transfer matrix method[J]. Research Square, 2021. DOI: 10.21203/rs.3.rs-1011701/v1.KHORRAMI Y, FATHI D, KHAVASI A, et al. Passive and active slab waveguide mode analysis using transfer matrix method[J]. Research Square, 2021. DOI: 10.21203/rs.3.rs-1011701/v1. [26] LI Z Y, LIN L L. Photonic band structures solved by a plane-wave-based transfer-matrix method[J]. Physical Review E, 2003, 67(4 Pt 2): 046607. [27] XI-KUN J, BIN L, WEI P, et al. Research of gain of vertical cavity semiconductor optical amplifiers based on transfer matrix method[J]. Laser Technology, 2005, 29(4): 377-379.XI-KUN J, BIN L, WEI P, et al. Research of gain of vertical cavity semiconductor optical amplifiers based on transfer matrix method[J]. Laser Technology, 2005, 29(4): 377-379. [28] 罗慧, 吴微微, 刘新群, 等. 平面电磁波与多层介质交互机理研究[C]// 2014年全国军事微波技术暨太赫兹技术学术会议. 常德: 中国电子学会微波分会, 2014. [29] 王宏磊. 电磁波跨越海-空界面传播特性研究[D]. 西安: 西北工业大学, 2015. [30] 李斌, 柳超, 康颖, 等. 基于矩量法和蝴蝶交配优化算法的甚低频发射天线顶线绝缘子均压环优化设计[J]. 高压电器, 2020, 56(5): 94-100, 106.LI B, LIU C, KANG Y, et al. Optimal design of pressure balancing ring for top line insulator of very low frequency transmitting antenna based on moment method and butterfly mating optimization algorithm[J]. High Voltage Electrical Apparatus, 2020, 56(5): 94-100, 106. [31] KWOK R, ROTHROCK D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958—2008[J]. Geophysical Research Letters, 2009, 36(15): 55460004. [32] 沃特. 甚低频无线电工程[M]. 北京: 国防工业出版社, 1973. [33] TSCHUDI M, STROEVE J, STEWART J. Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns[J]. Remote Sensing, 2016, 8: 457.