Algorithm of Water-Air Trans-Medium Communication Based on Acousto-Optic System
-
摘要: 为实现水-空跨介质上行无线通信, 文中在激光干涉检测水下声信号的基础上, 通过仿真计算获得了不同水深下到水平面的声信号衰减曲线, 以及不同水声功率频率信号引起的水面微振动曲线; 建立了水下声源特征与水表面扰动之间的定量关系; 设计了跨介质通信的码元, 并对多种解调方式进行了比较, 分析了各个参数变化对传输过程误码率的影响, 实现了声学-激光通信的调制与解调仿真。Abstract: To achieve underwater-aerial trans-medium uplink wireless communication, based on the laser interference detection of underwater acoustic signals, attenuation curves of acoustic signals at various water depths to the water surface and micro-vibration curves on the water surface caused by different underwater acoustic power frequency signals were obtained through simulation calculations. A quantitative relationship between underwater sound source characteristics and disturbances on the water surface was established. Code elements for trans-medium communication were designed, and various demodulation methods were compared. The impact of parameter variations on the transmission error rate was analyzed, and modulation and demodulation simulations of acoustic-laser communication were achieved.
-
表 1 仿真参数设置
Table 1. Setting of simulation parameters
参数 数值 激光波长/nm 632.8 系统增益 1 环境干扰幅值/nm 1 000 环境干扰频率/Hz 3 水声信号振幅/nm 30 水声信号频率/Hz 600 高频载波振幅/nm 60 高频载波频率/Hz 10 000 调制度 1.2 表 2 不同调制方式仿真结果
Table 2. Simulational results of different modulation methods
调制方式 载波频
率/Hz最小采
样点最大速度
/(bit/s)10−3误码率
所需信噪比2ASK 600 200 100 6.2 2FSK 600/1 000 300 67 22.0 4FSK 500/900/1 500/2 000 500 80 22.0 2PSK 600 80 250 22.0 -
[1] 马浩文. 水声通信及其军事应用研究[J]. 科技创新与应用, 2017(1): 106. [2] 杨坤, 杜度. 国外对潜通信技术发展研究[J]. 舰船科学技术, 2018, 40(1): 153-157. doi: 10.3404/j.issn.1672-7649.2018.01.028 [3] KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547. doi: 10.1109/ACCESS.2016.2552538 [4] GURU B S, HIZIROGLU H R. Electromagnetic field theory fundamentals[M]. 北京: 机械工业出版社, 2004. [5] LUCAS J, YIP C. A determination of the propagation of electromagnetic waves through seawater[J]. Underwater Technology, 2007, 27(1): 1-9. [6] ABDOU A, SHAW A, MASON A, et al. Wireless Sensor Network for underwater communication[C]//Wireless Sensor Systems (WSS 2012). London: IET, 2012. [7] ANGUITA D, BRIZZOLARA D, PARODI G. Optical wireless communication for underwater wireless sensor networks: Hardware modules and circuits design and implementation[C]//Oceans 2010 MTS. Seattle, USA: IEEE, 2010. [8] CELLA U M, JOHNSTONE R, SHULEY N, et al. Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results[C]//Proceedings of the 4th International Workshop on Underwater Networks. New York, USA: ACM Press, 2009. [9] GODIN O A. Low-frequency sound transmission through a gas-liquid interface[J]. The Journal of the Acoustical Society of America, 2008, 123(4): 1866-1879. doi: 10.1121/1.2874631 [10] JIANG X, TANG Z, WANG R. A novel cooperative spectrum signal detection algorithm for underwater communication system[J]. Eurasip Journal on Wireless Communications and Networking, 2019(1): 1-10. [11] 杨申. 基于微波-声学体制的空水跨介质通信研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [12] QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: Theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 483-492. [13] LONG J, XIE S, LI E, et al. Breakthrough the communication bottleneck between sky and underwater[J]. AIP Advances, 2021, 11(2): 025029. doi: 10.1063/5.0041955 [14] 王燕, 方尔正. 激光通量变化法探测水下声信号[J]. 南京理工大学学报(自然科学版), 2009, 33(1): 69-74.WANG Y, FANG E Z. Underwater acoustic detection utilizing laser luminous flux variation method[J]. Journal of Nanjing University of Science and Technology, 2009, 33(1): 69-74. [15] 苏晓明, 任耀, 陈华, 等. 基于激光衍射法的水下低频声源的深度探测[J]. 陕西师范大学学报(自然科学版), 2016, 44(5): 53-57. [16] 朱峰, 罗永健, 薛延平, 等. 斜入射条件下毛细波的激光衍射[J]. 光电子·激光, 2009, 20(6): 847-850. doi: 10.3321/j.issn:1005-0086.2009.06.033ZHU F, LUO Y J, XUE Y P, et al. Laser diffraction from capillary waves in conditions of oblique incidence[J]. Journal of Optoelectronics·Laser, 2009, 20(6): 847-850. doi: 10.3321/j.issn:1005-0086.2009.06.033 [17] 张晓琳, 毛红杰, 李凯, 等. 相位解调实现低频水表面声波振幅探测[J]. 红外与激光工程, 2019, 48(5): 59-65.ZHANG X L, MAO H J, LI K, et al. Amplitude detection of low frequency water surface acoustic wave based on phase demodulation[J]. Infrared and Laser Engineering, 2019, 48(5): 59-65. [18] MARSH H W, SCHULKIN M. Shallow-water transmission[J]. J. Acoust. Soc. Amer, 1962, 34: 863-864. [19] SCHULKIN M, MERCER J A. Colossus revisited: A review and extension of the Marsh-Schulkin shallow water transmission loss model[R]. Washington D C: NASA, 1985. [20] XU C, LI S, CHEN R, et al. 2009—2012 South China Sea section scientific CTD data sets[DS/OL]. Science Data Bank. [2022-04-14]. http://www.scidb.cn/cstr/31253.11.sciencedb.41.CSTR:31253.11.sciencedb.41.