• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮毂比对水下航行器高速泵喷推进器性能影响研究

甘工昌

甘工昌. 轮毂比对水下航行器高速泵喷推进器性能影响研究[J]. 水下无人系统学报, 2024, 32(6): 1123-1130 doi: 10.11993/j.issn.2096-3920.2024-0091
引用本文: 甘工昌. 轮毂比对水下航行器高速泵喷推进器性能影响研究[J]. 水下无人系统学报, 2024, 32(6): 1123-1130 doi: 10.11993/j.issn.2096-3920.2024-0091
GAN Gongchang. Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1123-1130. doi: 10.11993/j.issn.2096-3920.2024-0091
Citation: GAN Gongchang. Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1123-1130. doi: 10.11993/j.issn.2096-3920.2024-0091

轮毂比对水下航行器高速泵喷推进器性能影响研究

doi: 10.11993/j.issn.2096-3920.2024-0091
基金项目: 国防基础加强重点项目.
详细信息
    作者简介:

    甘工昌(1974-), 男, 高级工程师, 主要研究方向为能源动力推进技术

  • 中图分类号: TJ630.33; U664.34

Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle

  • 摘要: 为了探究轮毂比对水下航行器高速泵喷推进器的影响, 以比转速1 920的叶轮为研究对象, 对水下航行器高速泵喷推进器3种不同的轮毂比开展数值计算、性能结果分析比对和试验验证。应用Fluent软件, 采用基于雷诺平均N-S方程和SST k-ω模型, 预测叶轮的扬程、效率及推力。通过数值仿真计算, 得到不同轮毂比叶轮的性能曲线、空化性能数据及内流场状态。结果表明: 叶片表面从叶梢到轮缘的压力梯度逐渐变小, 随着轮毂比的增大, 叶片上最大静压下降, 泵喷推进器的扬程和效率均有所降低, 且空化性能下降明显, 但在空化状态上优于小轮毂比。研究结果可为水下航行器高速泵喷推进器结构优化设计提供参考。

     

  • 图  1  计算域三维模型

    Figure  1.  Three-dimensional model of computing domain

    图  2  轮毂比示意图

    Figure  2.  Schematic diagram of hub-to-tip ratio

    图  3  不同轮毂比叶轮模型

    Figure  3.  Impeller models with different hub-to-tip ratios

    图  4  叶轮和导叶网格划分

    Figure  4.  Mesh generation of the impeller and the diffuser

    图  5  试验原理及装置

    Figure  5.  Test principle and devices

    图  6  泵喷推进器外特性对比曲线

    Figure  6.  Comparison curves of external characteristic of the pump jet propulsor

    图  7  不同轮毂比下叶片速度迹线图

    Figure  7.  Velocity traces of the blade at different hub-to-tip ratios

    图  8  不同轮毂比下叶片吸力面压力分布

    Figure  8.  Pressure distribution on the suction surface of the blade at different hub-to-tip ratios

    图  9  不同轮毂比下叶轮压力面压力分布

    Figure  9.  Pressure distribution on the pressure surface of the impeller at different hub-to-tip radios

    图  10  能量特性曲线

    Figure  10.  Curves of energy characteristic

    图  11  不同轮毂比下推力系数变化

    Figure  11.  Variation of thrust coefficient at different hub-to-tip ratios

    图  12  航速随阻力变化曲线

    Figure  12.  Curve of speed versus drag

    图  13  航速随轮毂比变化曲线

    Figure  13.  Curve of speed versus hub-to-tip ratio

    图  14  不同轮毂比下各空化状态性能示意图

    Figure  14.  Performance of different cavitation state at different hub-to-tip ratios

    图  15  σ=4.72时不同轮毂比下泵喷推进器汽相体积分数

    Figure  15.  Vapor phase volume fraction at different hub-to-tip ratios under σ=4.72

    表  1  网格无关性检验方案

    Table  1.   Schemes of grid independence test

    方案网格数量效率/%轴功率
    (无量纲)
    扬程
    (无量纲)
    13 054 01571.20.9670.95
    23 831 03072.50.9870.97
    34 875 58473.80.9950.98
    46 500 47175.01.0001.00
    57 849 63175.11.0111.01
    下载: 导出CSV
  • [1] 张明宇, 王永生, 林瑞霖, 等. 泵喷推进器低噪声优化设计[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 7-12.

    ZHANG M Y, WANG Y S, LIN R L, et al. Low-noise optimization design of pump jet thruster[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(3): 7-12.
    [2] 张帅, 肖晶晶. 水下矢量推进器研究综述[J]. 舰船科学技术, 2019, 41(7): 5-9.

    ZHANG S, XIAO J J. Review of underwater vector propulsion system research[J]. Ship Science and Technology, 2019, 41(7): 5-9.
    [3] 刘业宝. 水下航行器泵喷推进器设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [4] 成科, 陈启明, 崔宝玲, 等. 多级离心泵扬程预测及内部流场数值模拟[J]. 流体机械, 2021, 49(3): 60-67.

    CHENG K, CHEN Q M, CUI B L, et al. Prediction of head and numerical simulation of internal flow field for multi-stage centrifugal pump[J]. Fluid Machinery, 2021, 49(3): 60-67.
    [5] 常书平, 王永生, 丁江明, 等. 基于 CFD 的船舶喷水推进器优化设计[J]. 船舶力学, 2013, 17(4): 369-374.

    CHANG S P, WANG Y S, DING J M, et al. Optimization design of ship waterjet propulsion based on CFD[J]. Journal of Ship Mechanics, 2013, 17(4): 369-374.
    [6] Ivanell S. Hydrodynamic simulation of a torpedo with pumpjet propulsion system[D]. Stockholm, Sweden: Royal Institute of Technology, 2001.
    [7] Altosole M, Benvenuto G, Figari M, et al. Dimensionless numerical approaches for the performance prediction of marine waterjet propulsion units[J]. International Journal of Rotating Machinery, 2012, 2012: 321306.
    [8] 郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020, 38(6): 566-570.

    HAO Z R, LI C, REN W L, et al. Blade optimization design of waterjet pump based on improved particle swarm optimization algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 566-570.
    [9] ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36.
    [10] ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
    [11] ZANGENEH M, DANESHKHAH K, DACOSTA B. A multi-objective automatic optimization strategy for design of waterjet pumps[C]//Royal Institution of Naval Architects International Conference-Waterjet Propulsion 5-Papers. [S.l.]: [s.n.], 2008: 27-32.
    [12] BULTEN N W H, VERBEEK R. Design of optimal inlet duct geometry based on vessel operational profile[C]//International Conference on Fast Sea Transportation. Ischia, Italy: FAST, 2003.
    [13] RAZAGHIAN A H, EBRAHIMI A, ZAHEDI F, et al. Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers[J]. Applied Ocean Research, 2021, 114: 102773. doi: 10.1016/j.apor.2021.102773
    [14] JI X Q, DONG X Q, YANG C J. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study[J]. Applied Ocean Research, 2021, 113: 102723. doi: 10.1016/j.apor.2021.102723
    [15] 李臣. 喷水推进轴流泵水力设计及性能仿真[D]. 大连: 大连海事大学, 2015.
    [16] HUANG Q, LI H, PAN G, et al. Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance[J]. Ocean Engineering, 2021, 221: 108509. doi: 10.1016/j.oceaneng.2020.108509
    [17] 邓辉, 张志宏, 王克彬, 等. 跨临界航速船舶水压场数值模拟研究[J]. 船舶力学, 2020, 24(11): 1383-1392.

    DENG H, ZHANG Z H, WANG K B, et al. Numerical simulation study on water pressure field of ships at transcritical speed[J]. Journal of Ship Mechanics, 2020, 24(11): 1383-1392.
    [18] 覃小瑞, 王名扬, 徐增丙, 等. 混流式喷水推进泵叶轮结构稳定性研究[J]. 机床与液压, 2022, 50(19): 179-184.

    QIN X R, WANG M Y, XU Z B, et al. Research on structural stability of mixed-flow waterjet pump impeller[J]. Machine Tool & Hydraulics, 2022, 50(19): 179-184.
    [19] ZHANG X, TANG F, LIU C, et al. Numerical simulation of transient characteristics of start-up transition process of large vertical siphon axial flow pump station[J]. Frontiers in Energy Research, 2021, 9: 706975. doi: 10.3389/fenrg.2021.706975
    [20] 刘厚林, 华旭辉, 吴贤芳, 等. 轮毂比对无轴泵喷推进器性能的影响[J]. 哈尔滨工程大学学报, 2022, 12: 1-8.

    LIU H L, HUA X H, WU X F, et al. The impact of hub-to-tip ratio on the performance of axial-free pump jet propulsor[J]. Journal of Harbin Engineering University, 2022, 12: 1-8.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-08-06
  • 录用日期:  2024-08-27
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回
    服务号
    订阅号