Underwater image enhancement method based on light compensation and pyramid fusion
-
摘要: 水下光学成像存在色偏、散射模糊与亮度不均的问题, 现有的基于深度学习的方法与基于水下成像像质退化模型的图像增强方法仍然存在鲁棒性差的问题。针对上述问题, 文中提出光照补偿与金字塔细节融合的单幅水下图像增强方法, 首先结合全局照度与色彩通道特性在像素级实现光照强度的估计与补偿, 实现各色彩通道的强度校正, 然后以高斯模糊估计图像散射分量并采用多尺度高斯滤波残差法去散射, 最后提出融合边缘增强、自适应Gamma校正及亮度均衡的多图金字塔细节融合亮度均衡方法, 较好地保留图像细节信息的同时, 解决图像亮度不均问题。对比现有方法, 文中方法适应性更好, 在水下图像质量评价指标(UIQM)与水下图像颜色质量评价指标(UCIQE)等方面都具有性能提升的优势。Abstract: The existing enhancement methods based on deep learning and underwater imaging models still have insufficient adaptability due to the problems of color deviation, scattering blur, and uneven brightness in underwater optical imaging. In response to the above issues, this article proposes a single underwater image enhancement method that combines lighting compensation and pyramid detail fusion. Firstly, the global illumination and color channel characteristics are combined to estimate and compensate lighting intensity at pixel level, achieving intensity correction for each color channel. Then, Gaussian blur is used to estimate the scattered components of the image and multi-scale gaussian filter residual method is used to remove scattering. Finally, a multi image pyramid detail fusion brightness equalization method that combines edge enhanced image, adaptive Gamma corrected image, and brightness balanced image is proposed, which effectively preserves image detail information while solving the problem of uneven brightness in the image. Subjective evaluation and objective analysis have demonstrated the effectiveness of the method proposed in this paper.
-
Key words:
- Light compensation /
- Descattering /
- Pyramid fusion /
- Brightness balance /
- Image enhancement
-
表 1 评价指标对比
Table 1. Comparison of evaluation indicators
方法 UCIQE UICM UISM UIConM UIQM RAW 0.371 2 9.909 7 1.290 9 −0.153 0 0.113 4 CLAHE 0.382 1 13.420 0 1.290 3 −0.190 8 0.077 3 RETINEX 0.379 1 16.559 9 1.531 4 −0.188 8 0.244 0 CBF 0.372 4 17.488 3 1.518 9 −0.198 2 0.232 9 CCIA 0.365 6 15.231 0 1.206 0 −0.190 9 0.103 0 Shallow-UWnet 0.341 9 7.152 7 0.514 1 −0.198 6 −0.356 5 SyreaNet 0.365 6 15.852 5 1.244 1 −0.199 0 0.102 6 MLLE 0.369 5 13.038 4 2.249 8 −0.184 9 0.370 9 WWPF 0.370 5 13.876 5 1.965 6 −0.175 6 0.343 8 文中算法 0.3879 16.400 1 0.847 8 −0.092 2 0.383 0 -
[1] ZHANG M, PENG J. Underwater image restoration based on a new underwater image formation model[J]. IEEE Access, 2018, 6: 58634-58644. doi: 10.1109/ACCESS.2018.2875344 [2] LEE H S, MOON S W, EOM I K. Underwater image enhancement using successive color correction and superpixel dark channel prior[J]. Symmetry, 2020, 12(8): 1220. doi: 10.3390/sym12081220 [3] 李玉鑫, 梁天全, 于会山, 等. 融合暗通道与Retinex算法的水下图像复原研究[J]. 计算机仿真, 2024, 41(3): 162-167, 172. doi: 10.3969/j.issn.1006-9348.2024.03.031LI Y X, LIANG T Q, YU H S, et al. research on underwater image restoration combining dark channel and Retinex algorithm[J]. Computer Simulation, 2024, 41(3): 162-167, 172. doi: 10.3969/j.issn.1006-9348.2024.03.031 [4] ZHUANG P X, WU J M, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546 [5] ZHANG W, ZHUANG P, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129 [6] ZHANG W D, ZHOU L, ZHUANG P X, et al. Underwater image enhancement via weighted wavelet visual perception fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2469-2483. doi: 10.1109/TCSVT.2023.3299314 [7] 张微微, 祝开艳. 基于图像融合的低光照水下图像增强[J]. 计算技术与自动化, 2023, 42(04): 85-92.ZHANG W W, ZHU K Y. Low-light underwater image enhancement based on image fusion [J]. Computing technology and automation, 2023, 42 (04): 85-92. [8] 唐军, 秦艳霞, 林玲, 等. 多尺度融合与细节突显的水下视觉图像增强算法[J/OL]. 机械科学与技术, 1-8[2024-05-04].https://doi.org/10.13433/j.cnki.1003-8728.20240044.TANG J, QIN Y X, LIN L, et al.Underwater visual image enhancement algorithm based on multi-scale fusion and detail highlighting [J/OL]. Mechanical science and technology, 1-8. [2024-05-04].https://doi.org/10.13433/j.cnki.1003-8728.20240044. [9] 张薇, 郭继昌. 基于白平衡和相对全变分的低照度水下图像增强[J]. 激光与光电子学进展, 2020, 57(12): 213-220.ZHANG W, GUO J C. Low-illumination underwater image enhancement based on white balance and relative total variation [J]. Progress in laser and optoelectronics, 2020, 57 (12): 213-220. [10] 王悦, 范慧杰, 刘世本, 等. 基于多尺度注意力和对比学习的水下图像增强[J]. 激光与光电子学进展, 2024, 61(04): 559-567.WANG Y, FAN H J, LIU S B, etal. Underwater image enhancement based on multi-scale attention and contrast learning [J]. Progress in laser and optoelectronics, 2024, 61 (4): 559-567. [11] 陈鑫, 钱旭, 周佳加, 等. 基于水下场景先验的水下图像增强方法研究[J]. 应用科技, 2024, 51(02): 56-65.CHEN X, QIAN X, ZHOU J J, et al. Research on underwater image enhancement method based on underwater scene prior[J]. Application Technology, 2024, 51 (02): 56-65. [12] ZHANG T, LI Y, TAKAHASHI S. Underwater image enhancement using improved generative adversarial network[J]. Concurrency and Computation Practice and Experience, 2020(3): 5841. [13] 李微. 基于改进U-Net网络的水下图像增强[D]. 哈尔滨工程大学, 2021. [14] GUO YC, LI H Y, ZHUANG P X, et al.Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 43(3): 862-870. [15] FU X Y, C X Y. Underwater image enhancement with global-local networks and compressed-histogram equalization[J]. Signal Processing-Image Communication, 2020, 86: 115892. [16] Naik A, Swarnakar A, Mittal K. Shallow-UWnet: compressed model for underwater image enhancement[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(18): 15853-15854. doi: 10.1609/aaai.v35i18.17923 [17] WEN J J, CUI J Q, ZHAO Z J, et al. Syreanet: A physically guided underwater image enhancement framework integrating synthetic and real images[C]//IEEE International Conference on Robotics and Automation(ICRA), London, England:IEEE, 2023: 5177-5183. [18] YING Z Q, LI G, REN Y R, et al. A new image contrast enhancement algorithm using exposure fusion framework[J].Computer Analysis of Images and Patterns, 2017(10425): 36-46. [19] FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image[C]//IEEE International Conference on Image Processing(ICIP), Paris, France:IEEE, 2014: 4572-4576. [20] DHIVYA R, PRAKASH R, MOHANRAJ M. Color balance and fusion for underwater image enhancement[J]. Digital Image Processing, 2019, 11: 25-29. [21] ZHANG W H, LI G, YING Z Q. A new underwater image enhancing method via color correction and illumination adjustment[C]//IEEE Visual Communications and Image Processing(VCIP), St. Petersburg, USA:IEEE, 2017: 1-4. [22] LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J].IEEE Transactions on Image Processing, 2020, 29: 4376-4389. [23] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J].IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551. [24] YANG M, SOWMYA A. An underwater color image quality evaluation metric[J].IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071.