• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于云端软件定义的水声跨域通信系统

姚可星 官权升 谢佳轩 赵昊 王焱

姚可星, 官权升, 谢佳轩, 等. 基于云端软件定义的水声跨域通信系统[J]. 水下无人系统学报, 2024, 32(4): 1-7 doi: 10.11993/j.issn.2096-3920.2024-0075
引用本文: 姚可星, 官权升, 谢佳轩, 等. 基于云端软件定义的水声跨域通信系统[J]. 水下无人系统学报, 2024, 32(4): 1-7 doi: 10.11993/j.issn.2096-3920.2024-0075
YAO Kexing, GUAN Quansheng, XIE Jiaxuan, ZHAO Hao, WANG Yan. Cloud-based Software-defined Acoustic for Cross-domain Communication System[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0075
Citation: YAO Kexing, GUAN Quansheng, XIE Jiaxuan, ZHAO Hao, WANG Yan. Cloud-based Software-defined Acoustic for Cross-domain Communication System[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0075

基于云端软件定义的水声跨域通信系统

doi: 10.11993/j.issn.2096-3920.2024-0075
基金项目: 国家自然科学基金(U23A20281), 广东省科技计划项目资助(2023A0505050097).
详细信息
    作者简介:

    姚可星(1995-), 男, 博士生, 主要研究方向为水声通信、声电协同等

  • 中图分类号: TB567

Cloud-based Software-defined Acoustic for Cross-domain Communication System

  • 摘要: 典型海洋监测类应用需要将从水下获取的数据回传至陆地监测中心, 由于水声通信性能的制约, 跨水-空界面的数据传输性能难以进一步提升。本文提出了一种基于云端软件定义水声(cloud-based software-defined acoustic, C-SDA)跨域通信系统架构。C-SDA将水声接收机从水面中继节点移动到云端(即监测中心), 并利用无线电通信带宽交换云端计算资源进行水声信号解调和解码。中继网关的水声-无线电双栈网络协议被简化为单栈结构, 避免了数据包的封装和再封装, 节省了硬件成本。C-SDA不仅能实现先进的通信信号处理, 而且能促进水声通信技术的更新和迭代。现场测试实验结果表明, 与自研的嵌入式水声接收机相比, 本文提出的C-SDA能够适用更高性能的均衡器, 并获得显著的误码率改善。

     

  • 图  1  C-SDA 的系统模型

    Figure  1.  System model of C-SDA

    图  2  C-SDA系统框架设计

    Figure  2.  Architecture design of the C-SDA system

    图  3  C-SDA方案与传统方案对比

    Figure  3.  Comparison between the C-SDA protocol architecture and traditional protocol architecture

    图  4  整体实验场景

    Figure  4.  Scenario of the overall experiment

    图  5  不同复杂度Turbo均衡算法的性能比较

    Figure  5.  Performance comparison of Turbo equalization algorithms with different complexities

    图  6  嵌入式水声通信机

    Figure  6.  Embedded underwater acoustic communication machine

    图  7  嵌入式系统与PC系统相同算法的处理效率比较

    Figure  7.  Comparison of processing efficiency of the same algorithm between embedded system and PC system

    图  8  云接收机的BER随着中继采样率的增大而减小

    Figure  8.  The BER of the cloud receiver decreases as the sampling rate in the surface relay increases

    表  1  均衡器的算法复杂度

    Table  1.   Algorithm complexity of equalizer

    均衡算法MAPMMSEapp-MMSE
    复杂度$ O\left( {{q^{M - 1}}} \right) $$ O\left( {{M^2} + {N^2}} \right) $$ O\left( {M + N} \right) $
    下载: 导出CSV
  • [1] Zhao Y, Huang J, Zhang P, et al. Direct air–water communication by using an optical-acoustic method[J]. Measurement, 2023, 223: 113824.
    [2] Qian J, Qu F, Su J, et al. Theoretical model and experiments of focused phased array for cross-medium communication in misaligned transmitter/receiver scenarios[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1348-1361. doi: 10.1109/JOE.2023.3263202
    [3] Lin Q, Gao D, Jin B, et al. Enhancing the sensitivity of photoacoustic spectrum system for liquid detection by coupling with acoustic metasurfaces[J]. Applied Physics Letters, 2023, 122(24): 242201. doi: 10.1063/5.0153453
    [4] Jiang W, Diamant R. Long-range underwater acoustic channel estimation[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6267-6282. doi: 10.1109/TWC.2023.3241230
    [5] Wang Y, Guan Q, Ji F, et al. Impact and analysis of space-time coupling on slotted MAC in UANs[J]. IEEE/ACM Transactions on Networking, 2023: 1–13.
    [6] Liang Y, Yu H, Ji F, et al. Multitask sparse bayesian channel estimation for turbo equalization in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2023, 48(3): 946-962. doi: 10.1109/JOE.2022.3229902
    [7] Cipriano A M, Şahin S, Poulliat C. Practical frequency-domain decision feedback equalization based on expectation propagation[J]. IEEE Communications Letters, 2023, 27(10): 2777-2781. doi: 10.1109/LCOMM.2023.3303676
    [8] Zhu Z, Zhou Y, Wang R, et al. Internet of underwater things infrastructure: a shared underwater acoustic communication layer scheme for real-world underwater acoustic experiments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6991-7003.
    [9] Zhilin I V, Bushnaq O M, Masi G D, et al. A universal multimode (acoustic, magnetic induction, optical, rf) software defined modem architecture for underwater communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9105-9116. doi: 10.1109/TWC.2023.3268418
    [10] Dabora R, Abakasanga E. On the capacity of communication channels with memory and sampled additive cyclostationary gaussian noise[J]. IEEE Transactions on Information Theory, 2023, 69(10): 6137-6166. doi: 10.1109/TIT.2023.3281519
    [11] Muranov K, Smida B, Devroye N. On blind channel estimation in full-duplex wireless relay systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4685-4701. doi: 10.1109/TWC.2021.3061518
    [12] Wang J T. Oversampling-based combining under isi channels[J]. IEEE Wireless Communications Letters, 2023, 12(3): 555-559. doi: 10.1109/LWC.2023.3234209
    [13] Priya P, Viterbo E, Hong Y. Low complexity MRC detection for OTFS receiver with oversampling[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1459-1473. doi: 10.1109/TWC.2023.3289610
    [14] SCHLÜTER M, et al. Bounds on phase, frequency, and timing synchronization in fully digital receivers with 1-bit quantization and oversampling[J]. IEEE Transactions on Communications, 2020, 68(10): 6499-6513. doi: 10.1109/TCOMM.2020.3005738
    [15] Tuchler M, Koetter R, Singer A C. Turbo equalization: principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754-767. doi: 10.1109/TCOMM.2002.1006557
    [16] 黄灿群. 基于多通道接收和发射的水声通信机[D]. 广州: 华南理工大学, 2021.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  19
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-06-03
  • 录用日期:  2024-06-13
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回
    服务号
    订阅号