Cross-Domain Communication System with Cloud-Based Software-Defined Acoustic
-
摘要: 由于水声通信性能的制约, 跨水-空界面的数据传输性能难以进一步提升。针对该问题, 文中提出了一种基于云端软件定义水声(C-SDA)的跨域通信系统架构。C-SDA将水声接收机从水面中继节点移动到云端(即监测中心), 并利用无线电通信带宽交换云端计算资源进行水声信号解调和解码。中继网关的水声-无线电双栈网络协议被简化为单栈结构, 避免了数据包的封装和再封装, 节省了硬件成本。C-SDA不仅能实现先进的通信信号处理, 而且能促进水声通信技术的更新和迭代。现场测试实验结果表明, 与自研的嵌入式水声接收机相比, C-SDA能够适用更高性能的均衡器, 使误码率得到显著改善。Abstract: Due to the restriction of acoustic communication performance, the performance of data transmission across the water-air interface is difficult to further improve. In this paper, a cross-domain communication system architecture with cloud-based software-defined acoustic(C-SDA) was proposed. C-SDA moved the underwater acoustic receiver from the surface relay to the cloud (i.e., the monitoring center) and used the radio communication bandwidth to exchange the computing resources of the cloud to demodulate and decode the acoustic signal. In this case, the acoustic-radio dual-stack protocol of the relay gateway was simplified to a single-stack structure, which avoided packet capsulation and re-capsulation and saved hardware costs. The C-SDA not only enabled advanced communication signal processing but also promoted rapid updates and iteration of acoustic communication technology. The field test results show that C-SDA can be applied to equalizers with higher performance and achieve a significant improvement in bit error rate compared with the self-developed embedded underwater acoustic receiver.
-
Key words:
- cross-domain communication /
- acoustic signal /
- software-defined
-
表 1 不同均衡器算法复杂度
Table 1. Algorithm complexity of different equalizers
均衡算法 复杂度 MAP $ O\left( {{q^{M - 1}}} \right) $ MMSE $ O\left( {{M^2} + {N^2}} \right) $ app-MMSE $ O\left( {M + N} \right) $ -
[1] ZHAO Y, HUANG J, ZHANG P, et al. Direct air-water communication by using an optical-acoustic method[J]. Measurement, 2023, 223: 113824. [2] QIAN J, QU F, SU J, et al. Theoretical model and experiments of focused phased array for cross-medium communication in misaligned transmitter/receiver scenarios[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1348-1361. doi: 10.1109/JOE.2023.3263202 [3] LIN Q, GAO D, JIN B, et al. Enhancing the sensitivity of photoacoustic spectrum system for liquid detection by coupling with acoustic metasurfaces[J]. Applied Physics Letters, 2023, 122(24): 242201. doi: 10.1063/5.0153453 [4] JIANG W, DIAMANT R. Long-range underwater acoustic channel estimation[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6267-6282. doi: 10.1109/TWC.2023.3241230 [5] WANG Y, GUAN Q, JI F, et al. Impact and analysis of space-time coupling on slotted MAC in UANs[J]. IEEE/ACM Transactions on Networking, 2023, 32(3): 1-13. [6] LIANG Y, YU H, JI F, et al. Multitask sparse bayesian channel estimation for turbo equalization in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2023, 48(3): 946-962. doi: 10.1109/JOE.2022.3229902 [7] CIPRIANO A M, ŞAHIN S, POULLIAT C. Practical frequency-domain decision feedback equalization based on expectation propagation[J]. IEEE Communications Letters, 2023, 27(10): 2777-2781. doi: 10.1109/LCOMM.2023.3303676 [8] ZHU Z, ZHOU Y, WANG R, et al. Internet of underwater things infrastructure: A shared underwater acoustic communication layer scheme for real-world underwater acoustic experiments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6991-7003. [9] ZHILIN I V, BUSHNAQ O M, MASI G D, et al. A universal multimode(acoustic, magnetic induction, optical, RF) software defined modem architecture for underwater communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9105-9116. doi: 10.1109/TWC.2023.3268418 [10] DABORA R, ABAKASANGA E. On the capacity of communication channels with memory and sampled additive cyclostationary gaussian noise[J]. IEEE Transactions on Information Theory, 2023, 69(10): 6137-6166. doi: 10.1109/TIT.2023.3281519 [11] MURANOV K, SMIDA B, DEVROYE N. On blind channel estimation in full-duplex wireless relay systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4685-4701. doi: 10.1109/TWC.2021.3061518 [12] WANG J T. Oversampling-based combining under ISI channels[J]. IEEE Wireless Communications Letters, 2023, 12(3): 555-559. doi: 10.1109/LWC.2023.3234209 [13] PRIYA P, VITERBO E, HONG Y. Low complexity MRC detection for OTFS receiver with oversampling[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1459-1473. doi: 10.1109/TWC.2023.3289610 [14] SCHLÜTER M, DÖRPINGHAUS M, FETTWEIS G P. Bounds on phase, frequency, and timing synchronization in fully digital receivers with 1-bit quantization and oversampling[J]. IEEE Transactions on Communications, 2020, 68(10): 6499-6513. doi: 10.1109/TCOMM.2020.3005738 [15] TUCHLER M, KOETTER R, SINGER A C. Turbo equalization: Principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754-767. doi: 10.1109/TCOMM.2002.1006557