• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰艇复合结构在冲击防护中的研究进展

张涛 孙庆贞 张磊 李香梅

张涛, 孙庆贞, 张磊, 等. 舰艇复合结构在冲击防护中的研究进展[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0072
引用本文: 张涛, 孙庆贞, 张磊, 等. 舰艇复合结构在冲击防护中的研究进展[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0072
ZHANG Tao, SUN QingZhen, ZHANG Lei, LI XiangMei. Current status of structural research in impact protection of naval structures[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0072
Citation: ZHANG Tao, SUN QingZhen, ZHANG Lei, LI XiangMei. Current status of structural research in impact protection of naval structures[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0072

舰艇复合结构在冲击防护中的研究进展

doi: 10.11993/j.issn.2096-3920.2024-0072
基金项目: 武警海警学院学院校级项目.
详细信息
    作者简介:

    张涛:张 涛(1992—), 男, 硕士研究生, 研究方向: 仿生设计理论及制造; 船舶结构设计

  • 中图分类号: U671.99

Current status of structural research in impact protection of naval structures

  • 摘要: 随着现代海战威胁的日益复杂化, 舰艇的结构防护成为提升生存能力和战斗效能的关键。本文综述了舰艇冲击防护结构的研究进展, 特别是从传统均质防护结构向多层复合防护结构的演变。面对现代化高能量攻击, 如导弹和鱼雷, 传统的坚固钢板和合金材料已难以满足防护需求, 促使研究者转向复合材料及其夹层结构。通过采用陶瓷、金属、纤维增强材料和聚合物, 结合梯度设计、嵌入式设计、点阵结构和夹层技术等先进设计理念, 不仅实现了更优的抗冲击性能, 也实现了结构轻量化。文章还讨论了材料界面结合强度、结构复杂度及制造难度等挑战, 并指出极端冲击条件下层间结合不良可能导致材料层分离或破裂, 削弱防护效能。未来研究应聚焦于纳米材料、高分子材料和智能材料的开发, 以及多功能集成设计的实现, 强化防护结构的隐身、防探测和主动防御功能。同时, 强调仿真技术在设计优化和性能预测中的核心作用, 以及增材制造和激光加工技术在提高生产效率和产品质量中的潜力, 通过技术创新和材料研发有效提升复合防护结构的综合性能, 满足现代军事和民用领域对高性能防护材料的需求。

     

  • 图  1  传统冲击防护结构

    Figure  1.  Traditional impact protection structure

    图  2  传统多层复合防护结构

    (a)铝合金/陶瓷/钛合金/凯夫拉/钛合金[13]; (b)陶瓷/纤维增强材料[14]; (c)SiC陶瓷/UHMWPE纤维板[15]

    图  3  不同形式的复合防护结构

    (a)梯度陶瓷复合结构; (b)三种镶嵌复合结构; (c)泡沫吸能复合结构; (d)预置预应力复合结构

    Figure  3.  Different forms of composite protective structures

    (a) graded ceramic composite structure; (b) Three Mosaic composite structures; (c) foam energy-absorbing composite structure; (d) Prestressed composite structures

    图  4  点阵夹芯冲击防护结构

    (a)受甲虫翅启发的点阵夹芯结构[37]; (b)不同点阵结构的夹层板[38]; (c)圆柱形点阵夹层结构[39]; (d)功能梯度结构点阵夹层面板[40]

    Figure  4.  Impact protection structure of the lattice sandwich

    (a) Lattice sandwich structures inspired by beetle wings; (b) Sandwich panels of different lattice structures; (c) Cylindrical lattice sandwich structure; (d) Functional gradient structure lattice sandwich panel

  • [1] 辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势[J]. 战术导弹技术, 2016(6): 105-110.

    Xin Chunliang, Wang Junlin, Xue Zaiqing, et al. Current situation and development trend of anti-ship missile warhead[J]. Tactical Missile Technology, 2016(6): 105-110.
    [2] Wiernicki C J, Liem F, Woods G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads[J]. Naval Engineers Journal, 1991, 103(3): 192-202. doi: 10.1111/j.1559-3584.1991.tb00949.x
    [3] 周晓松, 梅志远, 张焱冰. 复合材料夹层结构在舰艇碰撞防护中的研究进展[J]. 爆炸与冲击, 2018, 38(3): 696-706. doi: 10.11883/bzycj-2016-0303

    Zhou Xiaosong, Mei Zhiyuan, ZHANG Yanying. Research progress of composite sandwich structure in Ship collision protection[J]. Explosion and Shock Waves, 2018, 38(3): 696-706. doi: 10.11883/bzycj-2016-0303
    [4] Hu P, Cheng Y, Zhang P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile[J]. Ceramics International, 2021, 47(16): 22497-22513. doi: 10.1016/j.ceramint.2021.04.259
    [5] 施兴华, 许文强, 袁海, 等. 舰船复合材料防护结构的选择与优化[J]. 舰船科学技术, 2020, 42(7): 36-40.

    Shi Xinghua, Xu Wenqiang, Yuan Hai, et al. Selection and Optimization of Ship Composite Protective Structure[J]. Ship Science and Technology, 2020, 42(7): 36-40. (in Chinese)
    [6] 张延昌, 王自力, 顾金兰, 等. 夹层板在舰船舷侧防护结构中的应用[J]. 中国造船, 2009, 50(4): 36-44. doi: 10.3969/j.issn.1000-4882.2009.04.006

    Zhang Yanchang, Wang Zili, Gu Jinlan, et al. Application of sandwich plate in ship side protection structure[J]. Shipbuilding of China, 2009, 50(4): 36-44. doi: 10.3969/j.issn.1000-4882.2009.04.006
    [7] 李典, 侯海量, 朱锡, 等. 舰艇装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237-250. doi: 10.3969/j.issn.1000-4882.2018.01.023

    Li Dian, Hou HZ, Zhu Xi, et al. Research progress of ship armor protection Structure against ballistic impact[J]. Shipbuilding of China, 2018, 59(1): 237-250. doi: 10.3969/j.issn.1000-4882.2018.01.023
    [8] 严效男. 金属/陶瓷异质点阵结构设计与冲击防护性能研究[D]. 中国矿业大学, 2021.

    Yan X N. Design and impact protection performance of metal/ceramic heterogeneous lattice structures [D]. China University of Mining and Technology, 2021.
    [9] 罗家元, 陈哲伦, 李世岳等. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状[J/OL]. 复合材料科学与工程, 1-12

    4-03-13]. Luo Jiayuan, Chen Zhelun, Li Shiyue, et al. Research status of dynamic response and shock resistance design of typical protective materials under airburst loads [J/OL]. Composite Materials Science and Engineering, 1-12[2024-03-13].
    [10] Brennan M L, Delgado J P, Ferreiro L D, et al. Discovery and initial documentation of Uss Nevada (BB-36): an artifact of two World Wars and the advent of the Cold War[J]. Journal of Maritime Archaeology, 2022, 17(1): 93-129. doi: 10.1007/s11457-022-09324-5
    [11] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 82-91.

    Yu Yilei, JIANG Zhaoxiu, Wang Xiaodong, et al. Research on Ceramic fragmentation Behavior of Light ceramic/Metal Composite Armor against Vertical Penetration[J]. Explosion and Shock waves, 2021, 41(11): 82-91.
    [12] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉理工大学, 2013.

    Kong Xiangshao. Study on Explosion Load and Response Characteristics of Composite Multi-layer protective Structure [D]. Wuhan University of Technology, 2013.
    [13] 周红兵, 梅志远. 多层复合舰用装甲结构抗高速破片特性比较研究[J]. 材料开发与应用, 2011, 26(4): 1-6. doi: 10.3969/j.issn.1003-1545.2011.04.001

    Zhou Hongbing, Mei Zhiyuan. Comparative Study on High Speed Fragmentation Resistance of Multi-layer composite Naval Armor Structure[J]. Materials Development and Application, 2011, 26(4): 1-6. doi: 10.3969/j.issn.1003-1545.2011.04.001
    [14] Cao J, Lai J, Zhou J, et al. Experiments and simulations of the ballistic response of ceramic composite armors[J]. Journal of Mechanical Science, 2020, 34: 2783-2793.
    [15] Peng L, Tan M, Zhang X, et al. Investigations of the ballistic response of hybrid composite laminated structures[J]. Composite Structures, 2022, 282: 115019. doi: 10.1016/j.compstruct.2021.115019
    [16] 李永鹏, 徐豫新, 张健, 等. SiC 陶瓷/UHMWPE 纤维复合结构抗 12.7 mm 穿甲燃烧弹试验与仿真[J]. 兵工学报, 2022, 43(6): 1355-1364.

    Li Yongpeng, Xu Yuxin, Zhang Jian, et al. Test and Simulation of SiC ceramic /UHMWPE Fiber Composite Structure against 12.7 mm armor-piercing Incendiary bomb[J]. Acta Ordnance Engineering, 2022, 43(6): 1355-1364.
    [17] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能[J]. 兵工学报, 2021, 42(S1): 135-141.

    Zhang Nu, Yu Xin, Ming Fu Ren. Antiknock performance of composite laminates in underwater multilayer protective structures [J]. Acta Ordnance Engineering, 201, 42(S1): 135-141.
    [18] 程远胜, 谢杰克, 李哲, 等. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝夹芯复合结构毁伤响应特性[J]. 兵工学报, 2021, 42(08): 1753-1762.

    Cheng Yuan-Sheng, Xie Jak, Li Zhe, et al. Damage response characteristics of high-strength polyethylene/aluminum foam sandwich composite structures under the combined action of shock wave and fragment group [J]. Journal of Ordnance Engineering, 21, 42(08): 1753-1762.
    [19] 焦丽娟, 李军. 装甲防护材料的新葩——陶瓷-金属功能梯度复合材料[J]. 纤维复合材料, 2007(1): 55-58. doi: 10.3969/j.issn.1003-6423.2007.01.018

    Jiao Lijuan, Li Jun. A new patter-Ceramic-metal functional gradient composite for armor protection materials[J]. Fiber composite Materials, 2007(1): 55-58. doi: 10.3969/j.issn.1003-6423.2007.01.018
    [20] Farah S, Fuguo L, Zahid M H, et al. Design and Performance of Layered Heterostructure Composite Material System for Protective Armors.[J]. Materials (Basel, Switzerland), 2023, 16(14):
    [21] 叶中豹. 新型复合防护材料的动静态力学特性和工程应用研究[D]. 中国科学技术大学, 2018.

    Ye Zhongbao. Study on dynamic and static mechanical properties and engineering application of novel composite protective materials [D]. University of Science and Technology of China, 2018.
    [22] Guo G, Alam S, Peel L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles[J]. International Journal of Impact Engineering, 2021, 157: 104000. doi: 10.1016/j.ijimpeng.2021.104000
    [23] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1): 105-114.

    Hou Hai-Hao, Zhu Xi, Li Wei. Research on elastic resistance Mechanism of lightweight ceramic/metal composite armor[J]. Acta Ordnance Engineering, 2013, 34(1): 105-114.
    [24] 龙奎, 邓勇军, 陈小伟, 等. 基于 SHPB 试验的 B4C/Al 复合材料动态力学性能研究[J]. 稀有金属材料与工程, 2022, 51(10): 3826-3834.

    Long Kui, Deng Yongjun, Chen Xiaowei, et al. Study on Dynamic Mechanical Properties of B4C/Al Composites based on SHPB Test[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3826-3834.
    [25] 苏罗川, 宜晨虹, 刘文杰, 等. 轻质抗侵彻材料及结构研究现状[J]. 兵器装备工程学报, 2018, 39(1): 157-167. doi: 10.11809/bqzbgcxb2018.01.034

    Su Luochuan, Yi Chenhong, Liu Wenjie, et al. Research status of lightweight anti-penetration materials and structures[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 157-167. doi: 10.11809/bqzbgcxb2018.01.034
    [26] Übeyli M, Yıldırım R O, Ögel B. Investigation on the ballistic behavior of Al2O3/Al2O24 laminated composites[J]. Journal of Materials Processing Technology, 2008, 196(1-3): 356-364. doi: 10.1016/j.jmatprotec.2007.05.050
    [27] Chen Y-L, Huang W-K, Yeh J-N. Theoretical analysis of bulletproof capability of multilayer ceramic composites subjected to impact by an armor piercing projectile[J]. Advances In Materials Science Engineering, 2021, 2021: 1-13.
    [28] Zhao Z-N, Han B, Li F-H, et al. Enhanced bi-layer mosaic armor: experiments and simulation[J]. Ceramics International, 2020, 46(15): 23854-23866. doi: 10.1016/j.ceramint.2020.06.162
    [29] 张林, 陈斌, 谭清华, 等. 陶瓷复合装甲抗 14.5 mm 穿燃弹侵彻性能[J]. 兵工学报, 2022, 43(4): 758-767.

    Zhang Lin, Chen Bin, Tan Qing-Hua, et al. Resistance of ceramic composite armor to penetration of 14.5 mm projectile[J]. Acta Ordnance Engineering, 2022, 43(4): 758-767.
    [30] Wang C, Suo T, Hang C, et al. Influence of in-plane tensile preloads on impact responses of composite laminated plates[J]. International Journal of Mechanical Sciences, 2019, 161: 105012.
    [31] Shen Y, Wang Y, Du S, et al. Effects of the adhesive layer on the multi-hit ballistic performance of ceramic/metal composite armors[J]. Journal of Materials Research Technology, 2021, 13: 1496-1508. doi: 10.1016/j.jmrt.2021.05.058
    [32] 徐国军. 点阵金属陶瓷复合材料抗侵彻性能研究[D]. 上海海洋大学, 2019, 3-4.

    Xu Guojun. Research on penetration resistance of lattice cermet Composites[D]. Shanghai Ocean University, 2019, 3-4.
    [33] 张征, 吴化平, 李祥辉, 等. 金字塔点阵复合材料结构力学性能分析与优化[J]. 轻工机械, 2013, 31(1): 74-79.

    Zhang Zheng, Wu Huping, Li Xianghui, et al. Mechanical Properties Analysis and Optimization of Pyramid lattice Composite Structures[J]. Light Industry Machinery, 2013, 31(1): 74-79.
    [34] Zhang T, Cheng X, Guo C, et al. Toughness-improving design of lattice sandwich structures[J]. Materials Design, 2023: 111600.
    [35] Usta F, Türkmen H S, Scarpa F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures[J]. Thin-Walled Structures, 2021, 163: 107738. doi: 10.1016/j.tws.2021.107738
    [36] 韩宾, 于渤, 秦科科, 等. 低速冲击载荷下金属点阵夹芯板的动态响应分析[J]. 应用力学学报, 2014, 31(5): 782-788+835.

    Han Bin, Yu Bo, Qin Keke, et al. Dynamic response analysis of metal lattice sandwich plate under Low speed impact load[J]. Chinese Journal of Applied Mechanics, 2014, 31(5): 782-788+835.
    [37] Cai Z-b, Li Z-y, Ding Y, et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing[J]. Composites Part B: Engineering, 2019, 161: 490-501. doi: 10.1016/j.compositesb.2018.12.139
    [38] 王金友. 基于船舶轻量化的蜂窝夹层板的结构设计及隔声性能研究[D]. 江苏科技大学, 2021, 10.

    Wang Jinyou. Study on Structural design and sound insulation performance of honeycomb sandwich panel based on ship lightweight [D]. Jiangsu University of Science and Technology, 2021, 10.
    [39] Tiwari G, Khaire N. Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure[J]. International Journal of Impact Engineering, 2022, 160: 104065. doi: 10.1016/j.ijimpeng.2021.104065
    [40] Arslan K, Gunes R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads[J]. Composite Structures, 2018, 202: 304-312. doi: 10.1016/j.compstruct.2018.01.087
    [41] 亓昌, 郝鹏程, 舒剑, 等. 金字塔型点阵材料夹芯板抗爆性能仿真与优化[J]. 振动与冲击, 2019, 38(16): 245-252.

    Qi Chang, HAO Pengcheng, Shu Jian, et al. Simulation and Optimization of Antiknock Performance of Sandwich Plate with Pyramidal Lattice Material[J]. Journal of Vibration and Shock, 2019, 38(16): 245-252. (in Chinese)
    [42] Rusinov P, Blednova Z, Rusinova A, et al. Development and Research of New Hybrid Composites in Order to Increase Reliability and Durability of Structural Elements[J]. Metals, 2023, 13(7).
    [43] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2019, 48(8): 25-32.

    Wei Hua-zhen, ZHONG Wei-Hua, YU Guang. Research and application progress of polymer composites in armor protection[J]. Journal of Materials Engineering, 2019, 48(8): 25-32.
    [44] 郭克星, 夏鹏举. 智能复合材料的研究进展[J]. 功能材料, 2019, 50(4): 4017-4022+4029.

    Guo Kexing, Xia Pengju. Research progress of intelligent composites[J]. Journal of Functional Materials, 2019, 50(4): 4017-4022+4029. (in Chinese)
    [45] 王玉立. 金属/陶瓷异质结构复合成型与防护性能研究[D]. 中国矿业大学, 2022.

    Wang Yuli. Research on Composite Forming and Protective Properties of Metal/Ceramic Heterogeneous Structures[D]. China University of Mining and Technology, 2022.
    [46] 廖祖伟. 钢板—支撑钢筋—聚氨酯复合材料结构的性能及其在地下防护工程中的应用研究[D]. 西南交通大学, 2008.

    Liao Zuwei. Research on the properties of steel plate, supporting steel bar and polyurethane composite structure and its application in underground protection engineering [D]. Southwest Jiaotong University, 2008
    [47] 陶然, 贺春旺, 罗俊荣, 等. 复合材料构件设计理论及仿真研究进展[J]. 中国工程科学, 2023, 25(1): 121-130.

    Tao Ran, He Chunwang, Luo Junrong, et al. Research progress of composite component design theory and simulation[J]. Engineering Science, 2023, 25(1): 121-130. (in Chinese)
    [48] 杨智帆, 张永康. 复合增材制造技术研究进展[J]. 电加工与模具, 2019(2): 1-7. doi: 10.3969/j.issn.1009-279X.2019.02.001

    Yang Zhifan, Zhang Yongkang. Research progress of Composite Additive Manufacturing Technology[J]. Edm & Die, 2019(2): 1-7. doi: 10.3969/j.issn.1009-279X.2019.02.001
    [49] 王慧远, 李超, 李志刚, 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691. doi: 10.11900/0412.1961.2018.00517

    Wang Huiyuan, Li Chao, Li Zhigang, et al. Research progress and prospect on preparation and configuration design of light alloy composite reinforced by nano-reinforcement[J]. Acta Metalica Sinica, 2019, 55(6): 683-691. doi: 10.11900/0412.1961.2018.00517
    [50] 陈泽中, 李生娟. 面向智能制造的材料成型及控制工程升级探索[J]. 教育教学论坛, 2020(27): 220-221.

    Chen Zezhong, Li Shengjuan. Exploration of Material forming and control engineering upgrading for Intelligent Manufacturing[J]. Education and Teaching Forum, 2020(27): 220-221.
  • 加载中
图(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-07-09
  • 录用日期:  2024-07-24
  • 网络出版日期:  2024-09-10

目录

    /

    返回文章
    返回
    服务号
    订阅号