Current status of structural research in impact protection of naval structures
-
摘要: 随着现代海战威胁的日益复杂化, 舰艇的结构防护成为提升生存能力和战斗效能的关键。本文综述了舰艇冲击防护结构的研究进展, 特别是从传统均质防护结构向多层复合防护结构的演变。面对现代化高能量攻击, 如导弹和鱼雷, 传统的坚固钢板和合金材料已难以满足防护需求, 促使研究者转向复合材料及其夹层结构。通过采用陶瓷、金属、纤维增强材料和聚合物, 结合梯度设计、嵌入式设计、点阵结构和夹层技术等先进设计理念, 不仅实现了更优的抗冲击性能, 也实现了结构轻量化。文章还讨论了材料界面结合强度、结构复杂度及制造难度等挑战, 并指出极端冲击条件下层间结合不良可能导致材料层分离或破裂, 削弱防护效能。未来研究应聚焦于纳米材料、高分子材料和智能材料的开发, 以及多功能集成设计的实现, 强化防护结构的隐身、防探测和主动防御功能。同时, 强调仿真技术在设计优化和性能预测中的核心作用, 以及增材制造和激光加工技术在提高生产效率和产品质量中的潜力, 通过技术创新和材料研发有效提升复合防护结构的综合性能, 满足现代军事和民用领域对高性能防护材料的需求。Abstract: As modern naval threats become increasingly complex, the structural protection of ships has become key to enhancing survivability and combat effectiveness. This paper reviews the research progress in ship impact protection structures, particularly focusing on the evolution from traditional homogeneous protection structures to multilayer composite protection structures. In the face of modern high-energy attacks such as missiles and torpedoes, traditional robust steel plates and alloy materials have become inadequate to meet protection needs, prompting researchers to turn to composite materials and their layered structures. By utilizing ceramics, metals, fiber-reinforced materials, and polymers, and integrating advanced design concepts such as gradient design, embedded design, lattice structures, and sandwich technologies, not only has superior impact resistance been achieved but also structural lightweighting. The article also discusses challenges related to the strength of material interfaces, complexity of structures, and manufacturing difficulties, noting that poor interlayer bonding under extreme impact conditions may lead to material layer separation or cracking, weakening the protective efficacy. Future research should focus on the development of nanomaterials, polymer materials, and smart materials, as well as the implementation of multifunctional integrated designs to enhance the stealth, anti-detection, and active defense functions of protective structures. It also emphasizes the central role of simulation technology in design optimization and performance prediction, as well as the potential of additive manufacturing and laser processing technologies to improve production efficiency and product quality. Through technological innovation and material development, the comprehensive performance of composite protective structures can be effectively enhanced, meeting the needs of modern military and civil sectors for high-performance protective materials.
-
图 4 点阵夹芯冲击防护结构
(a)受甲虫翅启发的点阵夹芯结构[37]; (b)不同点阵结构的夹层板[38]; (c)圆柱形点阵夹层结构[39]; (d)功能梯度结构点阵夹层面板[40]
Figure 4. Impact protection structure of the lattice sandwich
(a) Lattice sandwich structures inspired by beetle wings; (b) Sandwich panels of different lattice structures; (c) Cylindrical lattice sandwich structure; (d) Functional gradient structure lattice sandwich panel
-
[1] 辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势[J]. 战术导弹技术, 2016(6): 105-110.Xin Chunliang, Wang Junlin, Xue Zaiqing, et al. Current situation and development trend of anti-ship missile warhead[J]. Tactical Missile Technology, 2016(6): 105-110. [2] Wiernicki C J, Liem F, Woods G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads[J]. Naval Engineers Journal, 1991, 103(3): 192-202. doi: 10.1111/j.1559-3584.1991.tb00949.x [3] 周晓松, 梅志远, 张焱冰. 复合材料夹层结构在舰艇碰撞防护中的研究进展[J]. 爆炸与冲击, 2018, 38(3): 696-706. doi: 10.11883/bzycj-2016-0303Zhou Xiaosong, Mei Zhiyuan, ZHANG Yanying. Research progress of composite sandwich structure in Ship collision protection[J]. Explosion and Shock Waves, 2018, 38(3): 696-706. doi: 10.11883/bzycj-2016-0303 [4] Hu P, Cheng Y, Zhang P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile[J]. Ceramics International, 2021, 47(16): 22497-22513. doi: 10.1016/j.ceramint.2021.04.259 [5] 施兴华, 许文强, 袁海, 等. 舰船复合材料防护结构的选择与优化[J]. 舰船科学技术, 2020, 42(7): 36-40.Shi Xinghua, Xu Wenqiang, Yuan Hai, et al. Selection and Optimization of Ship Composite Protective Structure[J]. Ship Science and Technology, 2020, 42(7): 36-40. (in Chinese) [6] 张延昌, 王自力, 顾金兰, 等. 夹层板在舰船舷侧防护结构中的应用[J]. 中国造船, 2009, 50(4): 36-44. doi: 10.3969/j.issn.1000-4882.2009.04.006Zhang Yanchang, Wang Zili, Gu Jinlan, et al. Application of sandwich plate in ship side protection structure[J]. Shipbuilding of China, 2009, 50(4): 36-44. doi: 10.3969/j.issn.1000-4882.2009.04.006 [7] 李典, 侯海量, 朱锡, 等. 舰艇装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237-250. doi: 10.3969/j.issn.1000-4882.2018.01.023Li Dian, Hou HZ, Zhu Xi, et al. Research progress of ship armor protection Structure against ballistic impact[J]. Shipbuilding of China, 2018, 59(1): 237-250. doi: 10.3969/j.issn.1000-4882.2018.01.023 [8] 严效男. 金属/陶瓷异质点阵结构设计与冲击防护性能研究[D]. 中国矿业大学, 2021.Yan X N. Design and impact protection performance of metal/ceramic heterogeneous lattice structures [D]. China University of Mining and Technology, 2021. [9] 罗家元, 陈哲伦, 李世岳等. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状[J/OL]. 复合材料科学与工程, 1-124-03-13]. Luo Jiayuan, Chen Zhelun, Li Shiyue, et al. Research status of dynamic response and shock resistance design of typical protective materials under airburst loads [J/OL]. Composite Materials Science and Engineering, 1-12[2024-03-13]. [10] Brennan M L, Delgado J P, Ferreiro L D, et al. Discovery and initial documentation of Uss Nevada (BB-36): an artifact of two World Wars and the advent of the Cold War[J]. Journal of Maritime Archaeology, 2022, 17(1): 93-129. doi: 10.1007/s11457-022-09324-5 [11] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 82-91.Yu Yilei, JIANG Zhaoxiu, Wang Xiaodong, et al. Research on Ceramic fragmentation Behavior of Light ceramic/Metal Composite Armor against Vertical Penetration[J]. Explosion and Shock waves, 2021, 41(11): 82-91. [12] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉理工大学, 2013.Kong Xiangshao. Study on Explosion Load and Response Characteristics of Composite Multi-layer protective Structure [D]. Wuhan University of Technology, 2013. [13] 周红兵, 梅志远. 多层复合舰用装甲结构抗高速破片特性比较研究[J]. 材料开发与应用, 2011, 26(4): 1-6. doi: 10.3969/j.issn.1003-1545.2011.04.001Zhou Hongbing, Mei Zhiyuan. Comparative Study on High Speed Fragmentation Resistance of Multi-layer composite Naval Armor Structure[J]. Materials Development and Application, 2011, 26(4): 1-6. doi: 10.3969/j.issn.1003-1545.2011.04.001 [14] Cao J, Lai J, Zhou J, et al. Experiments and simulations of the ballistic response of ceramic composite armors[J]. Journal of Mechanical Science, 2020, 34: 2783-2793. [15] Peng L, Tan M, Zhang X, et al. Investigations of the ballistic response of hybrid composite laminated structures[J]. Composite Structures, 2022, 282: 115019. doi: 10.1016/j.compstruct.2021.115019 [16] 李永鹏, 徐豫新, 张健, 等. SiC 陶瓷/UHMWPE 纤维复合结构抗 12.7 mm 穿甲燃烧弹试验与仿真[J]. 兵工学报, 2022, 43(6): 1355-1364.Li Yongpeng, Xu Yuxin, Zhang Jian, et al. Test and Simulation of SiC ceramic /UHMWPE Fiber Composite Structure against 12.7 mm armor-piercing Incendiary bomb[J]. Acta Ordnance Engineering, 2022, 43(6): 1355-1364. [17] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能[J]. 兵工学报, 2021, 42(S1): 135-141.Zhang Nu, Yu Xin, Ming Fu Ren. Antiknock performance of composite laminates in underwater multilayer protective structures [J]. Acta Ordnance Engineering, 201, 42(S1): 135-141. [18] 程远胜, 谢杰克, 李哲, 等. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝夹芯复合结构毁伤响应特性[J]. 兵工学报, 2021, 42(08): 1753-1762.Cheng Yuan-Sheng, Xie Jak, Li Zhe, et al. Damage response characteristics of high-strength polyethylene/aluminum foam sandwich composite structures under the combined action of shock wave and fragment group [J]. Journal of Ordnance Engineering, 21, 42(08): 1753-1762. [19] 焦丽娟, 李军. 装甲防护材料的新葩——陶瓷-金属功能梯度复合材料[J]. 纤维复合材料, 2007(1): 55-58. doi: 10.3969/j.issn.1003-6423.2007.01.018Jiao Lijuan, Li Jun. A new patter-Ceramic-metal functional gradient composite for armor protection materials[J]. Fiber composite Materials, 2007(1): 55-58. doi: 10.3969/j.issn.1003-6423.2007.01.018 [20] Farah S, Fuguo L, Zahid M H, et al. Design and Performance of Layered Heterostructure Composite Material System for Protective Armors.[J]. Materials (Basel, Switzerland), 2023, 16(14): [21] 叶中豹. 新型复合防护材料的动静态力学特性和工程应用研究[D]. 中国科学技术大学, 2018.Ye Zhongbao. Study on dynamic and static mechanical properties and engineering application of novel composite protective materials [D]. University of Science and Technology of China, 2018. [22] Guo G, Alam S, Peel L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles[J]. International Journal of Impact Engineering, 2021, 157: 104000. doi: 10.1016/j.ijimpeng.2021.104000 [23] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1): 105-114.Hou Hai-Hao, Zhu Xi, Li Wei. Research on elastic resistance Mechanism of lightweight ceramic/metal composite armor[J]. Acta Ordnance Engineering, 2013, 34(1): 105-114. [24] 龙奎, 邓勇军, 陈小伟, 等. 基于 SHPB 试验的 B4C/Al 复合材料动态力学性能研究[J]. 稀有金属材料与工程, 2022, 51(10): 3826-3834.Long Kui, Deng Yongjun, Chen Xiaowei, et al. Study on Dynamic Mechanical Properties of B4C/Al Composites based on SHPB Test[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3826-3834. [25] 苏罗川, 宜晨虹, 刘文杰, 等. 轻质抗侵彻材料及结构研究现状[J]. 兵器装备工程学报, 2018, 39(1): 157-167. doi: 10.11809/bqzbgcxb2018.01.034Su Luochuan, Yi Chenhong, Liu Wenjie, et al. Research status of lightweight anti-penetration materials and structures[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 157-167. doi: 10.11809/bqzbgcxb2018.01.034 [26] Übeyli M, Yıldırım R O, Ögel B. Investigation on the ballistic behavior of Al2O3/Al2O24 laminated composites[J]. Journal of Materials Processing Technology, 2008, 196(1-3): 356-364. doi: 10.1016/j.jmatprotec.2007.05.050 [27] Chen Y-L, Huang W-K, Yeh J-N. Theoretical analysis of bulletproof capability of multilayer ceramic composites subjected to impact by an armor piercing projectile[J]. Advances In Materials Science Engineering, 2021, 2021: 1-13. [28] Zhao Z-N, Han B, Li F-H, et al. Enhanced bi-layer mosaic armor: experiments and simulation[J]. Ceramics International, 2020, 46(15): 23854-23866. doi: 10.1016/j.ceramint.2020.06.162 [29] 张林, 陈斌, 谭清华, 等. 陶瓷复合装甲抗 14.5 mm 穿燃弹侵彻性能[J]. 兵工学报, 2022, 43(4): 758-767.Zhang Lin, Chen Bin, Tan Qing-Hua, et al. Resistance of ceramic composite armor to penetration of 14.5 mm projectile[J]. Acta Ordnance Engineering, 2022, 43(4): 758-767. [30] Wang C, Suo T, Hang C, et al. Influence of in-plane tensile preloads on impact responses of composite laminated plates[J]. International Journal of Mechanical Sciences, 2019, 161: 105012. [31] Shen Y, Wang Y, Du S, et al. Effects of the adhesive layer on the multi-hit ballistic performance of ceramic/metal composite armors[J]. Journal of Materials Research Technology, 2021, 13: 1496-1508. doi: 10.1016/j.jmrt.2021.05.058 [32] 徐国军. 点阵金属陶瓷复合材料抗侵彻性能研究[D]. 上海海洋大学, 2019, 3-4.Xu Guojun. Research on penetration resistance of lattice cermet Composites[D]. Shanghai Ocean University, 2019, 3-4. [33] 张征, 吴化平, 李祥辉, 等. 金字塔点阵复合材料结构力学性能分析与优化[J]. 轻工机械, 2013, 31(1): 74-79.Zhang Zheng, Wu Huping, Li Xianghui, et al. Mechanical Properties Analysis and Optimization of Pyramid lattice Composite Structures[J]. Light Industry Machinery, 2013, 31(1): 74-79. [34] Zhang T, Cheng X, Guo C, et al. Toughness-improving design of lattice sandwich structures[J]. Materials Design, 2023: 111600. [35] Usta F, Türkmen H S, Scarpa F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures[J]. Thin-Walled Structures, 2021, 163: 107738. doi: 10.1016/j.tws.2021.107738 [36] 韩宾, 于渤, 秦科科, 等. 低速冲击载荷下金属点阵夹芯板的动态响应分析[J]. 应用力学学报, 2014, 31(5): 782-788+835.Han Bin, Yu Bo, Qin Keke, et al. Dynamic response analysis of metal lattice sandwich plate under Low speed impact load[J]. Chinese Journal of Applied Mechanics, 2014, 31(5): 782-788+835. [37] Cai Z-b, Li Z-y, Ding Y, et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing[J]. Composites Part B: Engineering, 2019, 161: 490-501. doi: 10.1016/j.compositesb.2018.12.139 [38] 王金友. 基于船舶轻量化的蜂窝夹层板的结构设计及隔声性能研究[D]. 江苏科技大学, 2021, 10.Wang Jinyou. Study on Structural design and sound insulation performance of honeycomb sandwich panel based on ship lightweight [D]. Jiangsu University of Science and Technology, 2021, 10. [39] Tiwari G, Khaire N. Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure[J]. International Journal of Impact Engineering, 2022, 160: 104065. doi: 10.1016/j.ijimpeng.2021.104065 [40] Arslan K, Gunes R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads[J]. Composite Structures, 2018, 202: 304-312. doi: 10.1016/j.compstruct.2018.01.087 [41] 亓昌, 郝鹏程, 舒剑, 等. 金字塔型点阵材料夹芯板抗爆性能仿真与优化[J]. 振动与冲击, 2019, 38(16): 245-252.Qi Chang, HAO Pengcheng, Shu Jian, et al. Simulation and Optimization of Antiknock Performance of Sandwich Plate with Pyramidal Lattice Material[J]. Journal of Vibration and Shock, 2019, 38(16): 245-252. (in Chinese) [42] Rusinov P, Blednova Z, Rusinova A, et al. Development and Research of New Hybrid Composites in Order to Increase Reliability and Durability of Structural Elements[J]. Metals, 2023, 13(7). [43] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2019, 48(8): 25-32.Wei Hua-zhen, ZHONG Wei-Hua, YU Guang. Research and application progress of polymer composites in armor protection[J]. Journal of Materials Engineering, 2019, 48(8): 25-32. [44] 郭克星, 夏鹏举. 智能复合材料的研究进展[J]. 功能材料, 2019, 50(4): 4017-4022+4029.Guo Kexing, Xia Pengju. Research progress of intelligent composites[J]. Journal of Functional Materials, 2019, 50(4): 4017-4022+4029. (in Chinese) [45] 王玉立. 金属/陶瓷异质结构复合成型与防护性能研究[D]. 中国矿业大学, 2022.Wang Yuli. Research on Composite Forming and Protective Properties of Metal/Ceramic Heterogeneous Structures[D]. China University of Mining and Technology, 2022. [46] 廖祖伟. 钢板—支撑钢筋—聚氨酯复合材料结构的性能及其在地下防护工程中的应用研究[D]. 西南交通大学, 2008.Liao Zuwei. Research on the properties of steel plate, supporting steel bar and polyurethane composite structure and its application in underground protection engineering [D]. Southwest Jiaotong University, 2008 [47] 陶然, 贺春旺, 罗俊荣, 等. 复合材料构件设计理论及仿真研究进展[J]. 中国工程科学, 2023, 25(1): 121-130.Tao Ran, He Chunwang, Luo Junrong, et al. Research progress of composite component design theory and simulation[J]. Engineering Science, 2023, 25(1): 121-130. (in Chinese) [48] 杨智帆, 张永康. 复合增材制造技术研究进展[J]. 电加工与模具, 2019(2): 1-7. doi: 10.3969/j.issn.1009-279X.2019.02.001Yang Zhifan, Zhang Yongkang. Research progress of Composite Additive Manufacturing Technology[J]. Edm & Die, 2019(2): 1-7. doi: 10.3969/j.issn.1009-279X.2019.02.001 [49] 王慧远, 李超, 李志刚, 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691. doi: 10.11900/0412.1961.2018.00517Wang Huiyuan, Li Chao, Li Zhigang, et al. Research progress and prospect on preparation and configuration design of light alloy composite reinforced by nano-reinforcement[J]. Acta Metalica Sinica, 2019, 55(6): 683-691. doi: 10.11900/0412.1961.2018.00517 [50] 陈泽中, 李生娟. 面向智能制造的材料成型及控制工程升级探索[J]. 教育教学论坛, 2020(27): 220-221.Chen Zezhong, Li Shengjuan. Exploration of Material forming and control engineering upgrading for Intelligent Manufacturing[J]. Education and Teaching Forum, 2020(27): 220-221.