• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综合观测浮标中波浪能供电系统的混合储能控制方法研究

刘旭 陈震 刘臻 黎明

刘旭, 陈震, 刘臻, 等. 综合观测浮标中波浪能供电系统的混合储能控制方法研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0070
引用本文: 刘旭, 陈震, 刘臻, 等. 综合观测浮标中波浪能供电系统的混合储能控制方法研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0070
LIU Xu, CHEN Zhen, LIU Zhen, LI Ming. Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0070
Citation: LIU Xu, CHEN Zhen, LIU Zhen, LI Ming. Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0070

综合观测浮标中波浪能供电系统的混合储能控制方法研究

doi: 10.11993/j.issn.2096-3920.2024-0070
基金项目: 国家重点研发计划项目(2022YFC3104200), 泰山产业领军人才项目(tsls20231203).
详细信息
    作者简介:

    刘旭:刘 旭(1998-), 男, 在读硕士, 主要研究方向为波浪能发电

  • 中图分类号: TJ630; U230

Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys

  • 摘要: 波浪能是一种持续性好、分布范围广的绿色可再生能源, 可以为综合观测浮标持续性供电, 但波浪变化速度较快, 能量峰均比较高, 需要通过混合储能系统平滑其能量波动, 以便可靠地向电力负载供电。混合储能系统需要兼顾功率密度和能量密度特性, 能量管理策略对于充分利用不同器件的特性, 延长系统的寿命至关重要。文中重点研究了波浪能供电中储能系统能量分配和功率控制方法, 提出了一种基于深度确定性策略梯度(DDPG)的混合储能系统功率分配和控制策略, 旨在保持母线的稳定并充分发挥蓄电池与超级电容两种储能技术的优势。仿真和实物模拟实验证明了所提策略可以显著提高波浪能供电系统的稳定性, 蓄电池充放电功率峰值大幅降低, 母线电压纹波被控制在1.6%以下。

     

  • 图  1  波浪能供电系统总体结构图

    Figure  1.  Overall structure diagram of wave energy power supply system

    图  2  储能系统控制器结构

    Figure  2.  Energy Storage System Controller Architecture

    图  3  DDPG算法框架与原理

    Figure  3.  The framework and principle of the DDPG algorithm

    图  4  Buck模式下变流器的工作状态

    Figure  4.  The converter's Buck mode operation

    图  5  Boost模式下变流器的工作状态

    Figure  5.  The converter's Buck mode operation

    图  6  超级电容控制器结构

    Figure  6.  Super Capacitor Controller Structure

    图  7  基于Jonswap波浪谱的不规则波浪

    Figure  7.  Irregular waves based on the Jonswap wave spectrum

    图  8  基于不规则波浪输入下气流与转矩曲线

    Figure  8.  Airflow and torque curves with irregular wave inputs

    图  9  每回合总奖励值变化趋势

    Figure  9.  Trend chart of total reward value changes per round

    图  10  储能系统总功率

    Figure  10.  Total power diagram of energy storage system

    图  11  储能控制仿真结果

    Figure  11.  Simulation results of energy storage control

    图  12  不同策略下超级电容SOC曲线

    Figure  12.  SOC of supercapacitors under different strategies

    图  14  母线电压曲线局部放大

    Figure  14.  Local amplification of bus voltage curve

    图  13  母线电压对比结果

    Figure  13.  Comparison results of bus voltage

    图  15  基于双环PI和外环ADRC控制下母线电压曲线

    Figure  15.  The bus voltage curve controlled based on double-loop PI and outer loop ADRC

    图  16  OWC发电系统实物图

    Figure  16.  Physical photo of the OWC power generation system

    图  17  变转矩输入下转速控制结果

    Figure  17.  Speed control results under variable torque

    图  18  变转矩输入下母线输入功率与电压曲线

    Figure  18.  Bus input power and voltage curve under variable torque

    图  19  变转矩输入下储能系统各部分功率曲线

    Figure  19.  Power curves of energy storage system components under variable torque input

    表  1  参数列表

    Table  1.   Parameters of flexible intercepting net

    名称 参数 单位
    变流器功率电感 1 mH
    变流器滤波电容 1 000 uF
    开关频率 20 kHz
    蓄电池额定电压 24 V
    蓄电池容量 10 Ah
    超级电容额定电压 48 V
    超级电容容量 10 F
    下载: 导出CSV
  • [1] WANG J, WU W, WANG H. Blue energy in China: Exploring the prospects and development path for marine renewable energy industries[C]//IOP Conference Series: Earth and Environmental Science. Wuhan: IOP Publishing, 2023.
    [2] Davidson J. Energy harvesting for marine based sensors[D]. Australia: James Cook University, 2016.
    [3] 谭梦琳, 刘臻, 张晓霞, 等. 基于振荡水柱原理的大型海洋浮标供电系统设计及优化[J]. 海岸工程, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001

    TAN M L, LIU Z, ZHANG X X, et al. Design and optimization of large ocean buoy power supply system based on principle of oscillating water column[J]. Coastal Engineering, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001
    [4] JAHANGIR, MOHAMMAD H, SHAHSAVARI, et al. Feasibility study of a zero emission PV/Wind turbine/wave energy converter hybrid system for stand-alone power supply: A case study[J]. Journal of Cleaner Production, 2020, 262: 121250. doi: 10.1016/j.jclepro.2020.121250
    [5] KLUGER J M, HAJI M N, SLOCUM A H. The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage[J]. Applied Energy, 2023, 331: 120389. doi: 10.1016/j.apenergy.2022.120389
    [6] JAHANGIR M H, SALEHI M, ALIMORADIYAN H. Exergy and environmental analysis of oscillating wave energy converter hybrid with other renewable energy resources: A case study[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2023, 18(1): 2219676. doi: 10.1080/15567249.2023.2219676
    [7] RASOOL S, MUTTAQI K M, SUTANTO D. Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes[J]. Renewable Energy, 2020, 162: 2041-2055. doi: 10.1016/j.renene.2020.10.035
    [8] MA C, DONG S, LIAN J, et al. Multi-objective sizing of hybrid energy storage system for large-scale photovoltaic power generation system[J]. Sustainability, 2019, 11(19): 5441. doi: 10.3390/su11195441
    [9] KHALEEL M, YUSUPOV Z, YASSER N, et al. Enhancing microgrid performance through hybrid energy storage system integration: ANFIS and GA approaches[J]. Int. J. Electr. Eng. and Sustain, 2023: 38-48.
    [10] 陈攀. 锂离子动力电池脉冲放电下的热特性研究[D]. 武汉: 武汉理工大学, 2022.
    [11] PARWAL A, FREGELIUS M, TEMIZ I, et al. Energy management for a grid-connected wave energy park through a hybrid energy storage system[J]. Applied Energy, 2018, 231: 399-411. doi: 10.1016/j.apenergy.2018.09.146
    [12] RASOOL S, MUTTAQI K M, SUTANTO D. A multi-filter based dynamic power sharing control for a hybrid energy storage system integrated to a wave energy converter for output power smoothing[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1693-1706. doi: 10.1109/TSTE.2022.3170938
    [13] TAN P, HUANG L, CHEN M, et al. A robust faster joint control of a direct-drive wave energy converter combined with supercapacitor and battery energy storage[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11: 5417-5429. doi: 10.1109/JESTPE.2023.3304370
    [14] 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47.

    WU M D, SHENG S W, ZHANG Y Q, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Enengy, 2021, 9(1): 42-47.
    [15] 刘野, 丁圆强, 赵环宇, 等. 大型海洋资料浮标波浪能供电装置数值模拟研究[J]. 山东科学, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002

    LIU Y, DING Y Q, ZHAO H Y, et al. Numerical simulation of large ocean data buoy wave energy convertor[J]. Shandong Science, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002
    [16] LIU Z, CUI Y, LI M, et al. Steady state performance of an axial impulse turbine for oscillating water column wave energy converters[J]. Energy, 2017, 141: 1-10. doi: 10.1016/j.energy.2017.09.068
    [17] 袁煜博. 四开关变换器控制技术研究[D]. 北京: 北京交通大学, 2021.
    [18] GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/supercapacitor hybrid energy storage system for electric vehicles[C]//2016 12th World Congress on Intelligent Control and Automation (WCICA). Guilin: IEEE, 2016.
    [19] HOU Y, LIU L, WEI Q, et al. A novel DDPG method with prioritized experience replay[C]//2017 IEEE international conference on systems, man, and cybernetics (SMC). Canada: IEEE, 2017.
    [20] GALEELA M, KOPSIDAS K, CHAKRAVORTY D. Reliability framework integrating grid scale BESS considering BESS degradation[J]. International Journal of Electrical Power & Energy Systems, 2023, 152: 109228.
    [21] KOVALTCHOUK T, MULTON B, AHMED H B, et al. Enhanced aging model for supercapacitors taking into account power cycling: Application to the sizing of an energy storage system in a direct wave energy converter[J]. IEEE Transactions on Industry Applications, 2014, 51(3): 2405-2414.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-05-09
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-11-04

目录

    /

    返回文章
    返回
    服务号
    订阅号