Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys
-
摘要: 波浪能是一种持续性好、分布范围广的绿色可再生能源, 可以为综合观测浮标持续性供电, 但波浪变化速度较快, 能量峰均比较高, 需要通过混合储能系统平滑其能量波动, 以便可靠地向电力负载供电。混合储能系统需要兼顾功率密度和能量密度特性, 能量管理策略对于充分利用不同器件的特性, 延长系统的寿命至关重要。文中重点研究了波浪能供电中储能系统能量分配和功率控制方法, 提出了一种基于深度确定性策略梯度(DDPG)的混合储能系统功率分配和控制策略, 旨在保持母线的稳定并充分发挥蓄电池与超级电容两种储能技术的优势。仿真和实物模拟实验证明了所提策略可以显著提高波浪能供电系统的稳定性, 蓄电池充放电功率峰值大幅降低, 母线电压纹波被控制在1.6%以下。Abstract: Wave energy is a widely distributed green renewable energy source capable of providing continuous electrical power to comprehensive observation buoys. However, its rapid fluctuations and high peak-to-average ratio require hybrid energy storage systems to smooth out its energy fluctuations for reliable electrical load supply. These hybrid energy storage systems need to balance power and energy density characteristics, requiring energy management strategies to fully utilize device characteristics and extend system lifespan. This paper focuses on studying energy distribution and power control methods in wave energy supply, proposing a hybrid energy storage system power-sharing control strategy based on Deep Deterministic Policy Gradient (DDPG) to maintain bus stability and leverage the advantages of two energy storage technologies. Simulation and physical experiments demonstrate that this strategy significantly enhances system stability, reduces peak battery charge/discharge power, and keeps bus voltage ripple below 1.6%.
-
Key words:
- integrated observation buoys /
- wave energy /
- battery /
- supercapacitors /
- ddpg
-
表 1 参数列表
Table 1. Parameters of flexible intercepting net
名称 参数 单位 变流器功率电感 1 mH 变流器滤波电容 1 000 uF 开关频率 20 kHz 蓄电池额定电压 24 V 蓄电池容量 10 Ah 超级电容额定电压 48 V 超级电容容量 10 F -
[1] WANG J, WU W, WANG H. Blue energy in China: Exploring the prospects and development path for marine renewable energy industries[C]//IOP Conference Series: Earth and Environmental Science. Wuhan: IOP Publishing, 2023. [2] Davidson J. Energy harvesting for marine based sensors[D]. Australia: James Cook University, 2016. [3] 谭梦琳, 刘臻, 张晓霞, 等. 基于振荡水柱原理的大型海洋浮标供电系统设计及优化[J]. 海岸工程, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001TAN M L, LIU Z, ZHANG X X, et al. Design and optimization of large ocean buoy power supply system based on principle of oscillating water column[J]. Coastal Engineering, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001 [4] JAHANGIR, MOHAMMAD H, SHAHSAVARI, et al. Feasibility study of a zero emission PV/Wind turbine/wave energy converter hybrid system for stand-alone power supply: A case study[J]. Journal of Cleaner Production, 2020, 262: 121250. doi: 10.1016/j.jclepro.2020.121250 [5] KLUGER J M, HAJI M N, SLOCUM A H. The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage[J]. Applied Energy, 2023, 331: 120389. doi: 10.1016/j.apenergy.2022.120389 [6] JAHANGIR M H, SALEHI M, ALIMORADIYAN H. Exergy and environmental analysis of oscillating wave energy converter hybrid with other renewable energy resources: A case study[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2023, 18(1): 2219676. doi: 10.1080/15567249.2023.2219676 [7] RASOOL S, MUTTAQI K M, SUTANTO D. Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes[J]. Renewable Energy, 2020, 162: 2041-2055. doi: 10.1016/j.renene.2020.10.035 [8] MA C, DONG S, LIAN J, et al. Multi-objective sizing of hybrid energy storage system for large-scale photovoltaic power generation system[J]. Sustainability, 2019, 11(19): 5441. doi: 10.3390/su11195441 [9] KHALEEL M, YUSUPOV Z, YASSER N, et al. Enhancing microgrid performance through hybrid energy storage system integration: ANFIS and GA approaches[J]. Int. J. Electr. Eng. and Sustain, 2023: 38-48. [10] 陈攀. 锂离子动力电池脉冲放电下的热特性研究[D]. 武汉: 武汉理工大学, 2022. [11] PARWAL A, FREGELIUS M, TEMIZ I, et al. Energy management for a grid-connected wave energy park through a hybrid energy storage system[J]. Applied Energy, 2018, 231: 399-411. doi: 10.1016/j.apenergy.2018.09.146 [12] RASOOL S, MUTTAQI K M, SUTANTO D. A multi-filter based dynamic power sharing control for a hybrid energy storage system integrated to a wave energy converter for output power smoothing[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1693-1706. doi: 10.1109/TSTE.2022.3170938 [13] TAN P, HUANG L, CHEN M, et al. A robust faster joint control of a direct-drive wave energy converter combined with supercapacitor and battery energy storage[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11: 5417-5429. doi: 10.1109/JESTPE.2023.3304370 [14] 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47.WU M D, SHENG S W, ZHANG Y Q, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Enengy, 2021, 9(1): 42-47. [15] 刘野, 丁圆强, 赵环宇, 等. 大型海洋资料浮标波浪能供电装置数值模拟研究[J]. 山东科学, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002LIU Y, DING Y Q, ZHAO H Y, et al. Numerical simulation of large ocean data buoy wave energy convertor[J]. Shandong Science, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002 [16] LIU Z, CUI Y, LI M, et al. Steady state performance of an axial impulse turbine for oscillating water column wave energy converters[J]. Energy, 2017, 141: 1-10. doi: 10.1016/j.energy.2017.09.068 [17] 袁煜博. 四开关变换器控制技术研究[D]. 北京: 北京交通大学, 2021. [18] GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/supercapacitor hybrid energy storage system for electric vehicles[C]//2016 12th World Congress on Intelligent Control and Automation (WCICA). Guilin: IEEE, 2016. [19] HOU Y, LIU L, WEI Q, et al. A novel DDPG method with prioritized experience replay[C]//2017 IEEE international conference on systems, man, and cybernetics (SMC). Canada: IEEE, 2017. [20] GALEELA M, KOPSIDAS K, CHAKRAVORTY D. Reliability framework integrating grid scale BESS considering BESS degradation[J]. International Journal of Electrical Power & Energy Systems, 2023, 152: 109228. [21] KOVALTCHOUK T, MULTON B, AHMED H B, et al. Enhanced aging model for supercapacitors taking into account power cycling: Application to the sizing of an energy storage system in a direct wave energy converter[J]. IEEE Transactions on Industry Applications, 2014, 51(3): 2405-2414.