[1] |
哈尔滨李玥迪. 基于水下无人系统的电机故障诊断技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.
|
[2] |
武汉焦林健. 大尺度水下无人艇定深及安全线路跟踪研究[D]. 武汉: 华中科技大学, 2022.
|
[3] |
黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-231.Huang Yan, Li Yan, Yu Jiancheng, et al. State-of-the-art and developing trends of AUV intelligence[J]. Robot, 2020, 42(2): 215-231.
|
[4] |
许世坤. 基于滑模理论的UUV轨迹跟踪与主动容错控制研究[D]. 长春: 吉林大学, 2021.
|
[5] |
张宝贵, 周俊. UUV应急处理策略构建推理研究[J]. 数字海洋与水下攻防, 2021, 4(2): 139-142.
|
[6] |
郭恩全, 陈晓明, 张鑫. 水中兵器综合测试与故障诊断技术[C]//2011年振动与噪声测试峰会论文集. 北京: 中国电子学会, 2011: 194-199.
|
[7] |
郭小溪. 水下无人航行器故障预测与健康管理框架研究[J]. 科技风, 2021(21): 189-190.
|
[8] |
曹飞, 叶枫桦, 于宪龙. 无人水下航行器故障预测与健康管理框架研究[J]. 数字海洋与水下攻防, 2020, 3(4): 350-354.
|
[9] |
赵博, 王天宇, 张润峰. 基于模糊相关向量机的UUV中缓变故障检测方法[J]. 计算机与数字工程, 2023, 51(4): 838-844.
|
[10] |
Bian X Q, Chen T, Yan Z P, et al. Fault diagnosis based on grey dynamic prediction for AUV sensor[C]//2009 IEEE International Conference on Industrial Technology (ICIT). Churchill, VIC, Australia: IEEE, 2009.
|
[11] |
韩云东, 周明, 童艳, 等. 基于案例推理的鱼雷制导系统故障诊断方法[J]. 鱼雷技术, 2012, 20(2): 129-133.
|
[12] |
Zhou Z. Research on key technology of prognostic and health management for autonomous underwater vehicle [C]//2017 International Conference on Robotics and Machine Vision. Kitakyushu, Japan: SPIE, 2017.
|
[13] |
Lu W, Liang B, Cheng Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2016, 64(3): 2296-2305
|
[14] |
Wen L, Gao L, Li X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017. 49(1): 136-144
|
[15] |
Pan S J, Yang Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359 doi: 10.1109/TKDE.2009.191
|
[16] |
Ramesh T S, Shum S K, Davis J F. A structured framework for efficient problem solving in diagnostic expert systems[J]. Computers & Chemical Engineering, 1988, 12(9-10): 891-902
|
[17] |
Wilcox N A, Himmelblau D. M. The possible cause and effect graphs(PCEG) model for fault diagnosis—I. Methodology[J]. Computers & Chemical Engineering, 1994, 18(2): 103-116
|
[18] |
Palshikar G K. Temporal fault trees[J]. Information and Software Technology, 2002, 44(3): 137-150 doi: 10.1016/S0950-5849(01)00223-3
|
[19] |
彭华亮, 沈暑龙, 李军, 等. 基于故障树的故障诊断专家系统设计[J]. 控制工程, 2019, 26(3): 584-588.Peng Hualiang, Shen Shulong, Li Jun, et al. Design of diagnostic expert system for launch vehicles based on FTA[J]. Control Engineering of China, 2019, 26(3): 584-588.
|
[20] |
周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758. doi: 10.3724/SP.J.1004.2009.00748Zhou Donghua, Hu Yanyan. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758. doi: 10.3724/SP.J.1004.2009.00748
|
[21] |
Watanabe K, Himmelblau D M. Instrument fault detection in systems with uncertainties[J]. International Journal of Systems Science, 1982, 13(2): 137-158. doi: 10.1080/00207728208926337
|
[22] |
张栋, 李春涛, 杨艺. 基于多模型参数估计的舵机故障诊断算法[J]. 电光与控制, 2014, 21(12): 85-89.
|
[23] |
Chow E, Willsky A. Analytical redundancy and the design of robust failure detection systems[J]. IEEE Transactions on automatic control, 1984, 29(7): 603-614. doi: 10.1109/TAC.1984.1103593
|
[24] |
郑小霞, 钱锋. 动态系统故障诊断技术的研究与发展[J]. 化工自动化及仪表, 2005(4): 1-7.Zheng Xiaoxia, Qian Feng. Research and development of fault diagnosis methods for dynamic system[J]. Control and Instruments in Chemical Industry, 2005(4): 1-7.
|
[25] |
强子健, 鲁峰, 常晓东, 等. 基于二阶鲁棒滑模观测器的民用涡扇发动机气路故障诊断[J]. 推进技术, 2020, 41(6): 1411-1419.Qiang Zijian, Lu Feng, Chang Xiaodong, et al. Gas path fault diagnosis based on second-order robust sliding mode observer for civil turbofan engine[J]. Journal of Propulsion Technology, 2020, 41(6): 1411-1419.
|
[26] |
丁琦. 基于解析模型的非线性系统故障诊断方法研究[D]. 厦门: 厦门大学, 2018.
|
[27] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16.
|
[28] |
Montgomery D C. Introduction to statistical quality control[M]. USA: John Wiley & Sons, 2007.
|
[29] |
Nandi S, Toliyat H A, Li X. Condition monitoring and fault diagnosis of electrical motors—A review[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 719-729. doi: 10.1109/TEC.2005.847955
|
[30] |
Alexander G, Jean M. decomposition of hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15(4): 723-736. doi: 10.1137/0515056
|
[31] |
Rajakarunakaran S, Venkumar P, Devaraj D, et al. Artificial neural network approach for fault detection in rotary system[J]. Applied Soft Computing, 2008, 8(1): 740-748. doi: 10.1016/j.asoc.2007.06.002
|
[32] |
Siddique A, Yadava G S, Singh B. Applications of artificial intelligence techniques for induction machine stator fault diagnostics[C]//4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. Atlanta, GA, USA: IEEE, 2003: 29-34.
|
[33] |
胡杰, 严勇杰, 单尧. 基于CUSUM控制图的电离层慢变故障检测方法[J]. 指挥信息系统与技术, 2019, 10(1): 49-54.Hu Jie, Yan Yongjie, Shan Yao. Ionospheric slow-growing error detection method based on CUSUM control chart[J]. Command Information System and Technology, 2019, 10(1): 49-54.
|
[34] |
Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52. doi: 10.1016/0169-7439(87)80084-9
|
[35] |
Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels[C]//Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI, USA: IEEE, 1999.
|
[36] |
Boashash B. Time frequency signal analysis: Past, present and future trends[J]. Control and Dynamic Systems, 1996, 78: 1-69.
|
[37] |
Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005.
|
[38] |
Lin J, Zuo M J. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical Systems and Signal Processing, 2003, 17(6): 1259-1269. doi: 10.1006/mssp.2002.1507
|
[39] |
徐超. 基于Hilbert-Huang变换的磁悬浮转子跌落振动信号检测[D]. 长春: 吉林大学, 2018.
|
[40] |
Huang N E, Shen S S P. Hilbert-Huang transform and its applications[M]. Singapore: World Scientific, 2014.
|
[41] |
Jegadeeshwaran R, Sugumaran V. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines[J]. Mechanical Systems and Signal Processing, 2015, 52: 436-446.
|
[42] |
Zhang X L, Chen W, Wang B J, et al. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization[J]. Neurocomputing, 2015, 167: 260-279. doi: 10.1016/j.neucom.2015.04.069
|
[43] |
Jung U, Koh B. Wavelet energy-based visualization and classification of high-dimensional signal for bearing fault detection[J]. Knowledge and Information Systems, 2015, 44(1): 197-215. doi: 10.1007/s10115-014-0761-z
|
[44] |
Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377-388. doi: 10.1016/j.sigpro.2016.07.028
|
[45] |
Lei Y G, Li N P, Guo L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016
|
[46] |
Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 314-334. doi: 10.1016/j.ymssp.2013.06.004
|
[47] |
Kan M S, Tan A, Mathew J. A review on prognostic techniques for non-stationary and non-linear rotating systems[J]. Mechanical Systems and Signal Processing, 2015, 62: 1-20.
|
[48] |
Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. doi: 10.1115/1.3656900
|
[49] |
Qian Y, Yan R, Gao R. A multi-time scale approach to remaining useful life prediction in rolling bearing[J]. Mechanical Systems and Signal Processing, 2017, 83: 549-567. doi: 10.1016/j.ymssp.2016.06.031
|
[50] |
牛乾. 机械旋转部件的性能退化及其寿命预测方法研究[D]. 杭州: 浙江大学, 2018.
|
[51] |
Ashwin T R, McGordon A, Jennings P A. Electrochemical modelling of Li-ion battery pack with constant voltage cycling[J]. Journal of Power Sources, 2017, 341: 327-339. doi: 10.1016/j.jpowsour.2016.11.092
|
[52] |
孙建. 滚动轴承振动故障特征提取与寿命预测研究[D]. 大连: 大连理工大学, 2015
|
[53] |
陈坤龙. 基于数据驱动的锂电池剩余寿命预测方法研究[D]. 北京: 北京交通大学, 2018.
|
[54] |
Severson K A, Attia P M, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. doi: 10.1038/s41560-019-0356-8
|
[55] |
Schwabacher M A. A survey of data-driven prognostics[C]//InfoTech @ Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration. Arlington, Virginia, USA: AIAA, 2005: 887-891.
|
[56] |
Gebraeel N Z, Lawley M A. A neural network degradation model for computing and updating residual life distributions[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(1): 154-163. doi: 10.1109/TASE.2007.910302
|
[57] |
姜媛媛, 刘柱, 罗慧, 等. 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报, 2016, 30(2): 179-185.Jiang Yuanyuan, Liu Zhu, Luo Hui, et al. ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 179-185.
|
[58] |
刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44(5): 395-400.Liu Ziying, Zhu Chenlei. IGBT life prediction based on elman neural network model[J]. Semiconductor Technology, 2019, 44(5): 395-400.
|
[59] |
奚立峰, 黄润青, 李兴林, 等. 基于神经网络的球轴承剩余寿命预测[J]. 机械工程学报, 2007, 43(10): 137-143. doi: 10.3901/JME.2007.10.137Xi Lifeng, Huang Runqing, Li Xinglin, et al. Residual life predictions for ball bearing based on neural networks[J]. Journal of Mechanical Engineering, 2007, 43(10): 137-143. doi: 10.3901/JME.2007.10.137
|
[60] |
Khumprom P, Yodo N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4): 1-21.
|
[61] |
Yann L C, Yoshua B, Geoffrey H. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[62] |
张继冬, 邹益胜, 邓佳林, 等. 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30(18): 2231-2235.Zhang Jidong, Zou Yisheng, Deng Jialin, et al. Bearing remaining life prediction based on full convolutional layer neural networks[J]. China Mechanical Engineering, 2019, 30(18): 2231-2235.
|
[63] |
Malhi A, Yan R, Gao R X. Prognosis of defect propagation based on recurrent neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(3): 703-711. doi: 10.1109/TIM.2010.2078296
|
[64] |
Li X, Zhang L, Wang Z, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518. doi: 10.1016/j.est.2018.12.011
|
[65] |
Chen C, Zhang B, Vachtsevanos G, et al. Machine condition prediction based on adaptive neuro—fuzzy and high-order particle filtering[J]. IEEE Transactions on Industrial Electronics, 2010, 58(9): 4353-4364.
|
[66] |
Acuña D E, Orchard M E. Particle-filtering-based failure prognosis via sigma-points: Application to lithium-ion battery state-of-charge monitoring[J]. Mechanical Systems and Signal Processing, 2017, 85: 827-848. doi: 10.1016/j.ymssp.2016.08.029
|
[67] |
Hu C, Youn B D, Wang P, et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering & System Safety, 2012, 103: 120-135.
|
[68] |
Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5): 1037-1048. doi: 10.1007/s10845-014-0933-4
|
[69] |
Lu W, Liang B, Cheng Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2016, 64(3): 2296-2305.
|
[70] |
Wen L, Gao L, Li X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(1): 136-144.
|
[71] |
陈超, 沈飞, 严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1): 33-40.Chen Chao, Shen Fei, Yan Ruqiang. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 33-40.
|
[72] |
胡明武. 基于迁移学习的变工况下滚动轴承故障诊断方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.
|
[73] |
Hu Q, Zhang R, Zhou Y. Transfer learning for short-term wind speed prediction with deep neural networks[J]. Renewable Energy, 2016, 85: 83-95. doi: 10.1016/j.renene.2015.06.034
|
[74] |
Ribeiro M, Grolinger K, ElYamany H F, et al. Transfer learning with seasonal and trend adjustment for cross-building energy forecasting[J]. Energy & Buildings, 2018, 165: 352-363.
|
[75] |
Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018.
|
[76] |
Xie Y, Wang Z, Ji S. Noise2Same: Optimizing a self-supervised bound for image denoising[J]. Advances in Neural Information Processing Systems, 2020, 33: 20320-20330.
|
[77] |
Laine S, Karras T, Lehtinen J, et al. High-quality self-supervised deep image denoising[J]. Advances in Neural Information Processing Systems, 2019, 32: 6970-6980.
|
[78] |
Krull A, Buchholz T O, Jug F. Noise2Void—learning denoising from single noisy images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 2129-2137.
|
[79] |
Devlin J, Chang M, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, Minnesota, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
[80] |
Hassani K, Khasahmadi A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 37th International Conference on Machine Learning. Vienna, Austria: ICML, 2020.
|
[81] |
Luo L, Wang X, Guo H, et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907-2017)[J]. Remote Sensing of Environment, 2019, 232: 111280. doi: 10.1016/j.rse.2019.111280
|
[82] |
Nagla K, Uddin M, Singh D. Multisensor data fusion and integration for mobile robots: A review[J]. IAES International Journal of Robotics and Automation, 2014, 3(2): 131.
|
[83] |
Dinh N V, Kim G W. Multi-sensor fusion towards VINS: A concise tutorial, survey, framework and challenges[J]. 2020 IEEE International Conference on Big Data and Smart Computing. Busan, Korea(South): IEEE, 2020: 459-462.
|
[84] |
Soilán M, Sánchez-Rodríguez A, del Río-Barral P, et al. Review of laser scanning technologies and their applications for road and railway infrastructure monitoring[J]. Infrastructures, 2019, 4(4): 58. doi: 10.3390/infrastructures4040058
|
[85] |
Rashdi R, Martínez-Sánchez J, Arias P, et al. Scanning technologies to building information modelling: A review[J]. Infrastructures, 2022, 7(4): 49. doi: 10.3390/infrastructures7040049
|
[86] |
Trubia S, Severino A, Curto S, et al. Smart roads: An overview of what future mobility will look like[J]. Infrastructures, 2020, 5(12): 107. doi: 10.3390/infrastructures5120107
|