• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声学超材料的鱼雷动力舱段减振方法

孙旭阳 周景军 王谦 张志民

孙旭阳, 周景军, 王谦, 等. 基于声学超材料的鱼雷动力舱段减振方法[J]. 水下无人系统学报, 2024, 32(6): 1072-1081 doi: 10.11993/j.issn.2096-3920.2024-0063
引用本文: 孙旭阳, 周景军, 王谦, 等. 基于声学超材料的鱼雷动力舱段减振方法[J]. 水下无人系统学报, 2024, 32(6): 1072-1081 doi: 10.11993/j.issn.2096-3920.2024-0063
SUN Xuyang, ZHOU Jingjun, WANG Qian, ZHANG Zhimin. Vibration Reduction Method for Power Cabin of Torpedoes Based on Acoustic Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1072-1081. doi: 10.11993/j.issn.2096-3920.2024-0063
Citation: SUN Xuyang, ZHOU Jingjun, WANG Qian, ZHANG Zhimin. Vibration Reduction Method for Power Cabin of Torpedoes Based on Acoustic Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1072-1081. doi: 10.11993/j.issn.2096-3920.2024-0063

基于声学超材料的鱼雷动力舱段减振方法

doi: 10.11993/j.issn.2096-3920.2024-0063
详细信息
    作者简介:

    孙旭阳(1999-), 男, 在读硕士, 主要研究方向为声学超材料的减振应用

  • 中图分类号: TJ630

Vibration Reduction Method for Power Cabin of Torpedoes Based on Acoustic Metamaterials

  • 摘要: 鱼雷声隐身性能直接影响发射平台的安全性、自身攻击的隐蔽性及线导导引的有效性。目前广泛采用的减振降噪手段在控制鱼雷中低频振动方面效果不佳, 为解决这一问题, 文中针对鱼雷动力舱段展开了声学超材料减振方法研究。首先, 对动力舱段在轴向激励下的振动响应特性进行分析, 设计了悬臂梁局域共振单元结构, 并对该结构的带隙特性及减振效果进行分析。其次, 针对动力舱段支承结构, 提出基于声学超材料的减振方案。仿真分析发现, 声学超材料在相应带隙范围内对振动具有显著的抑制效果, 某些测点的衰减量高达11.95 dB。最后, 试验验证了声学超材料减振方案的有效性, 为解决鱼雷动力舱段中低频振动问题提供思路。

     

  • 图  1  典型舱段模型

    Figure  1.  Model of the typical cabin

    图  2  激励点与测点位置

    Figure  2.  The location of excitation points and measurement points

    图  3  初始振动响应曲线

    Figure  3.  Response curves of initial vibration

    图  4  超材料单胞结构

    Figure  4.  Single-cell structure of the metamaterials

    图  5  悬臂梁局域共振单元能带结构

    Figure  5.  Energy band structure of the local resonance unit of the cantilever beam

    图  6  振动传递率

    Figure  6.  Vibration transmissibility

    图  7  超材料布置方案

    Figure  7.  Layout of metamaterials

    图  8  各测点振动加速度响应对比

    Figure  8.  Comparison of vibration acceleration response at each measurement point

    图  9  试验系统图

    Figure  9.  Diagram of the test system

    图  10  现场试验布置

    Figure  10.  Layout of field test

    图  11  试验现场传感器布置

    Figure  11.  Sensor arrangement at the test site

    图  12  声学超材料结构布局

    Figure  12.  The structural layout of acoustic metamaterials

    图  13  壳体测点加速度响应对比

    Figure  13.  Comparison of acceleration response of shell measurement points

    表  1  动力舱段材料参数

    Table  1.   Material parameters of the power cabin

    结构材料密度/(kg/m3)弹性模量/GPa泊松比
    壳体铝合金2 72070.00.33
    前支承
    后支承
    铝合金2 81071.70.33
    下载: 导出CSV

    表  2  局域共振单元材料参数

    Table  2.   Material parameters of the local resonance unit

    材料密度/(kg/m3)弹性模量/GPa泊松比
    铝合金2 72070.00.330
    有机树脂1 1532.10.400
    11 30040.80.369
    下载: 导出CSV

    表  3  0~1 500 Hz内各测点加速度总振级对比

    Table  3.   Comparison of total acceleration level for each measurement point within 0~1 500 Hz

    测点位置 振级/dB
    原支承 声学超材料支承 总衰减量
    P1(x) 104.04 99.74 4.30
    P2(x) 106.20 103.30 2.90
    P3(x) 91.06 85.46 5.60
    P4(x) 92.28 84.02 8.26
    P5(y) 79.31 76.18 3.13
    P6(y) 82.82 76.24 6.58
    P7(y) 78.01 71.61 6.40
    下载: 导出CSV

    表  4  0~1 500 Hz内各测点加速度总振级

    Table  4.   Total acceleration level for each measurement point within 0~1 500 Hz

    测点位置 振级/dB
    原支承 声学超材料支承 总衰减量
    CH1 62.13 59.62 2.51
    CH2 61.07 58.07 3.00
    CH3 55.99 53.28 2.71
    CH4 53.63 50.76 2.87
    CH5 45.89 45.08 0.81
    CH6 44.36 42.20 2.16
    CH7 42.44 39.86 2.58
    下载: 导出CSV
  • [1] 尹韶平. 鱼雷减振降噪技术[M]. 北京: 国防工业出版社, 2016.
    [2] 史小锋, 党建军, 梁跃, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647.

    SHI X F, DANG J J, LIANG Y, et al. Development status and trend of energy and power technology for underwater attack and defensive weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647.
    [3] 郭勍, 庞多, 刘小西, 等. 多平台鱼雷实航可靠性试验剖面设计方法[J]. 水下无人系统学报, 2022, 30(1): 128-134.

    GUO Q, PANG D, LIU X X, et al. Profile design method of reliability test for multi-platform launching torpedo in sea trial[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 128-134.
    [4] 钱在棣. 鱼雷噪声控制技术综述[C]//第十一届船舶水下噪声学术讨论会论文集. [S.l.]: 中国造船工程学会船舶力学学术委员会, 2007.
    [5] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68-78. doi: 10.3901/JME.2016.13.068

    WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78. doi: 10.3901/JME.2016.13.068
    [6] 顾仲权. 振动主动控制[M]. 北京: 国防工业出版社, 1997.
    [7] 向育佳, 季振林, 赵欣棠. 基于Warshall-Floyd算法的船舶结构噪声传递路径研究[J]. 振动与冲击, 2019, 38(2): 82-89, 97.

    XIANG Y J, JI Z L, ZHAO X T. Transfer path analysis of ship structure-borne noises based on the Warshall-Floyd algorithm[J]. Journal of Vibration and Shock, 2019, 38(2): 82-89, 97.
    [8] 刘岩, 张庆荣, 费梦茹. 船舶结构振动噪声分析与控制措施[J]. 船舶物资与市场, 2021(12): 53-54.
    [9] 刘五合, 吴樾, 张帆. 基于声学超材料的齿轮减速器箱体减振方法研究[J]. 热能动力工程, 2022, 37(9): 170-177.

    LIU W H, WU Y, ZHANG F. Research on vibration reduction method of gear reducer box based on acoustic metamaterials[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 170-177.
    [10] 夏百战, 杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报, 2023, 21(7): 1-4.

    XIA B Z, YANG T Z. Progress in acoustic metamaterials and phononic crystals[J]. Journal of Dynamics and Control, 2023, 21(7): 1-4.
    [11] NATEGHI A, SANGIULIANO L, CLAEYS C, et al. Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes[J]. Journal of Sound and Vibration, 2019, 455: 96-117. doi: 10.1016/j.jsv.2019.05.009
    [12] 王刚. 声子晶体局域共振带隙机理及减振特性研究[D]. 长沙: 国防科技大学, 2005.
    [13] WANG G, WEN X, WEN J, et al. Quasi-one-dimensional periodic structure withlocally resonant band gap[J]. Journal of Applied Mechanics, 2006, 73(1): 167-170. doi: 10.1115/1.2061947
    [14] FRANDSEN N M M, BILAL O R, JENSEN J S, et al. Inertial amplification of continuous structures: Large band gaps from small masses[J]. Journal of Applied Physics, 2016, 119(12): 124902. doi: 10.1063/1.4944429
    [15] 朱席席. 基于声学超材料的加筋板振动与声辐射控制[D]. 长沙: 国防科学技术大学, 2016.
    [16] 顾金桃, 王晓乐, 汤又衡, 等. 提高飞机壁板低频宽带隔声的层合声学超材料[J]. 航空学报, 2022, 43(1): 355-364.

    GU J T, WANG X L, TANG Y H. Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 355-364.
    [17] 温激鸿, 蔡力, 郁殿龙, 等. 声学超材料基础理论与应用[M]. 北京: 科学出版社, 2018.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  35
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-19
  • 录用日期:  2024-05-22
  • 网络出版日期:  2024-06-03

目录

    /

    返回文章
    返回
    服务号
    订阅号