[1] |
唐胜景. 跨介质飞行器关键技术及飞行动力学研究趋势分析[J]. 飞航导弹, 2021(6): 7-13.
|
[2] |
李超, 吕日毅, 钱仁军, 等. 美跨介质飞行器技术发展与运用研究[J]. 战术导弹技术, 2023(6): 120-127.
|
[3] |
何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science and Technology, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032
|
[4] |
侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.Hou Taogang, Jin Dianzhe, Gong Yuyan, et al. Frontier technology analysis and future prospects of aquatic un-manned aerial vehicle[J]. Science & Technology Review, 2023, 41(2): 5-22.
|
[5] |
张军, 曹耀初, 高德宝, 等. 水下-空中跨介质航行器研究进展[C]//协同创新砥砺奋进—船舶力学学术委员会第九次全体会议文集. 无锡: 中国造船工程学会, 2018.
|
[6] |
姚熊亮, 赵斌, 马贵辉. 跨介质航行体出水问题研究现状与展望[J/OL]. 航空学报, 2023, 1-27. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2023.29598.
|
[7] |
王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082Wang Cong, Xu Haiyu, Lu Jiaxing. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
|
[8] |
辛万青. 跨介质航行体流体动力调控研究进展及新构想[J]. 导弹与航天运载技术, 2021(6): 1-6.Xin Wanqing. A progress review and new methodology of the hydrodynamic control for cross-medium vehicles[J]. Missiles and Space Vehicles, 2021(6): 1-6.
|
[9] |
史崇镔. 跨介质结构物出入水多相流体动力学特性研究[D]. 大连: 大连理工大学, 2021.
|
[10] |
陈怀远. 跨介质飞行器设计及流体动力学特性分析[D]. 南京: 南京航空航天大学, 2019.
|
[11] |
Yan G X, Pan G, Shi Y, et al. Experimental and numerical investigation of water impact on air-launched AUVs[J]. Ocean Engineering, 2018, 167: 156-168. doi: 10.1016/j.oceaneng.2018.08.044
|
[12] |
Shi Y, Pan G, Yim C S, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs[J]. Journal of Fluids and Structures, 2019, 91: 102760. doi: 10.1016/j.jfluidstructs.2019.102760
|
[13] |
Shi Y, Gao X, Pan G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry[J]. Ocean Engineering, 2020, 202: 107203. doi: 10.1016/j.oceaneng.2020.107203
|
[14] |
Liu Z P, Shi Y, Wu K, et al. Experimental study on load characteristics of vehicle during high-speed water entry[J]. Ocean Engineering, 2023, 288: 116052. doi: 10.1016/j.oceaneng.2023.116052
|
[15] |
Chaudhry A Z, Shi Y, Pan G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects[J]. Applied Ocean Research, 2021, 115: 102849. doi: 10.1016/j.apor.2021.102849
|
[16] |
杨柳. 超弹性球体垂直入水空泡流动及结构响应特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[17] |
Sun T Z, Zhou L, Yin Z H, et al. Cavitation bubble dynamics and structural loads of high-speed water entry of a cylinder using fluid-structure interaction method[J]. Applied Ocean Research, 2020, 101: 102285. doi: 10.1016/j.apor.2020.102285
|
[18] |
高英杰. 基于流固耦合方法的回转体高速入水流场及载荷特性研究[D]. 大连: 大连理工大学, 2020.
|
[19] |
Zhang G Y, Feng S, Zhang Z F, et al. Investigation of hydroelasticity in water entry of flexible wedges with flow detachment[J]. Ocean Engineering, 2021, 222: 1-13.
|
[20] |
Xia S S, Wei Y J, Wang C. Analysis of high-speed water entry in semi-sealed cylindrical shells: Cavity formation and self-disturbance characteristics[J]. Ocean Engineering, 2023, 288: 116177. doi: 10.1016/j.oceaneng.2023.116177
|
[21] |
郝常乐, 党建军, 陈长盛, 等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3): 678-687. doi: 10.6052/0459-1879-21-510
|
[22] |
Huang C, Liu Z, Liu Z X, et al. Motion characteristics of high-speed supercavitating projectiles including structural deformation[J]. Energies, 2022, 15(5): 1933. doi: 10.3390/en15051933
|
[23] |
侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2): 332-341. doi: 10.3969/j.issn.1000-1093.2020.02.015Hou Yu, Huang Zhengui, Guo Zeqing, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile[J]. Acta Armamentarii, 2020, 41(2): 332-341. doi: 10.3969/j.issn.1000-1093.2020.02.015
|
[24] |
黄振贵, 范浩伟, 陈志华, 等. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 117-131. doi: 10.11883/bzycj-2023-0156Huang Zhengui, Fan Haowei, Chen Zhihua, et al. Numerical simulation study on the mechanism and characteristics of highspeed water entry of hollow projectiles[J]. Explosion and Shock Waves, 2024, 44(1): 117-131. doi: 10.11883/bzycj-2023-0156
|
[25] |
Wang H, Luo Y, Chen Z, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity[J]. Ocean Engineering, 2022, 256: 111464. doi: 10.1016/j.oceaneng.2022.111464
|
[26] |
Wang H, Huang Z G, Huang D, et al. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds[J]. Ocean Engineering, 2022, 265(4): 112548.
|
[27] |
Dong Q, Zhao X, Huang B, et al. Acoustic-gravity waves induced by vortices horizontally moving underwater[J]. Acta Mech. Sin., 2024, 40(2): 323289. doi: 10.1007/s10409-023-23289-x
|
[28] |
张润东, 段金雄, 孙铁志, 等. 自由面碎冰浮冰环境高速入水动力学特性[J]. 空气动力学学报, 2024, 42(1): 100-112. doi: 10.7638/kqdlxxb-2023.0191Zhang Rundong, Duan Jinxiong, Sun Tiezhi, et al. Dynamic characteristics of high-speed water entry in the environment of free water surface with crushed ice[J]. Acta Aerodynamica Sinica, 2024, 42(1): 100-112. doi: 10.7638/kqdlxxb-2023.0191
|
[29] |
朱睿, 张焕彬, 庄启彬, 等. 跨介质弹体出水稳定性[J]. 北京理工大学学报, 2023, 43(1): 45-53.Zhu Rui, Zhang Huanbin, Zhuang Qibin, et al. Water-to-air stability of trans-phase missile[J]. Transactions of Beijing institute of Technology, 2023, 43(1): 45-53.
|
[30] |
田盎. 超空泡航行体高速入水过程缓冲结构降载特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
[31] |
李永利, 刘安, 冯金富, 等. 航行器小角度入水跳弹过程研究[J]. 兵工学报, 2016, 37(10): 1860-1872. doi: 10.3969/j.issn.1000-1093.2016.10.013Li Yongli, Liu An, Feng Jinfu, et al. Research on ricochet process of small-angle water-entry vehicle[J]. Acta Armamentarii, 2016, 37(10): 1860-1872. doi: 10.3969/j.issn.1000-1093.2016.10.013
|
[32] |
袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响[J]. 应用力学学报, 2015, 32(1): 11-16,168. doi: 10.11776/cjam.32.01.A001Yuan Xulong, Zhu Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry[J]. Chinese Journal of Applied Mechanics, 2015, 32(1): 11-16,168. doi: 10.11776/cjam.32.01.A001
|
[33] |
时素果, 王亚东, 刘乐华, 等. 预置舵角下超空泡航行体运动过程弹道特性研究[J]. 兵工学报, 2017, 38(10): 1974-1979. doi: 10.3969/j.issn.1000-1093.2017.10.013Shi Suguo, Wang Yadong, Liu Lehua, et al. Research on the trajectory characteristics of supercavitating vehicle at preset rudder angle[J]. Acta Armamentarii, 2017, 38(10): 1974-1979. doi: 10.3969/j.issn.1000-1093.2017.10.013
|
[34] |
陈诚, 袁绪龙, 邢晓琳, 等. 预置舵角下超空泡航行体倾斜入水弹道特性研究[J]. 兵工学报, 2018, 39(9): 1780-1785. doi: 10.3969/j.issn.1000-1093.2018.09.015Chen Cheng, Yuan Xulong, Xing Xiaolin, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle[J]. Acta Armamentarii, 2018, 39(9): 1780-1785. doi: 10.3969/j.issn.1000-1093.2018.09.015
|
[35] |
刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验[J]. 兵工学报, 2023, 44(6): 1632-1642. doi: 10.12382/bgxb.2022.1117Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental investigation of the influence of preset rudder angle on tail-slapping of a trans-media vehicle during water entry[J]. Acta Armamentarii, 2023, 44(6): 1632-1642. doi: 10.12382/bgxb.2022.1117
|
[36] |
刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
|
[37] |
Shi Y, Hua Y, Pan G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape[J]. Physics of Fluids, 2020, 32(12): 122119. doi: 10.1063/5.0033906
|
[38] |
华扬, 施瑶, 潘光, 等. 非对称头型航行器入水空泡形态与弹道特性的实验研究[J]. 西北工业大学学报, 2021, 39(6): 1249-1258. doi: 10.3969/j.issn.1000-2758.2021.06.010Hua Yang, Shi Yao, Pan Guang, et al. Experimental study on water-entry cavity and trajectory of vehicle with asymmetric nose shape[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1249-1258. doi: 10.3969/j.issn.1000-2758.2021.06.010
|
[39] |
唐楚淳, 黄振贵, 陈志华, 等. 斜截体头型弹丸低速垂直入水实验研究[J]. 兵工学报, 2020, 41(S1): 54-58.Tang Chuchun, Huang Zhengui, Chen Zhihua, et al. Experimental study of the low-speed vertical water entry process of oblique head projectile[J]. Acta Armamentarii, 2020, 41(S1): 54-58.
|
[40] |
宋立, 于海月, 介百冰, 等. 非对称头部运动体低速垂直入水试验研究[J]. 兵器装备工程学报, 2021, 42(3): 35-39, 44. doi: 10.11809/bqzbgcxb2021.03.006Song Li, Yu Haiyue, Jie Baibing, et al. Experimental study of low speed vertical water entry with moving object of asymmetric head type[J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 35-39, 44. doi: 10.11809/bqzbgcxb2021.03.006
|
[41] |
孙杨. 非对称头型运动体入水多相流动特性及运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
[42] |
Wang X H, Shi Y, Pan G, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes[J]. Ocean Engineering, 2021, 234: 109274. doi: 10.1016/j.oceaneng.2021.109274
|
[43] |
Yu Y, Shi Y, Pan G, et al. Effect of asymmetric nose shape on the cavity and mechanics of projectile during high-speed water entry[J]. Ocean Engineering, 2022, 266: 112983. doi: 10.1016/j.oceaneng.2022.112983
|
[44] |
Li D J, Li F J, Shi Y Z, et al. A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles[J]. Ocean Engineering, 2020, 215: 107894. doi: 10.1016/j.oceaneng.2020.107894
|
[45] |
Akbari M A, Mohammadi J, Fereidooni J. A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 1-15. doi: 10.1007/s40430-020-02713-8
|
[46] |
祁晓斌, 施瑶, 刘喜燕, 等. 阶梯式圆柱射弹小角度入水弹道特性研究[J]. 力学学报, 2023, 55(11): 2468-2479. doi: 10.6052/0459-1879-23-212Qi Xiaobin, Shi Yao, Liu Xiyan, et al. Study on trajectory characteristics of stepped cylindrical projectile entering water at small angle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2468-2479. doi: 10.6052/0459-1879-23-212
|
[47] |
马贵辉. 等压排气改善潜射航行体出水特性及稳健性机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[48] |
邵冬. 跨介质飞航器动力分析[J]. 航空动力, 2020(1): 12-15.Shao Dong. Analysis to the power system of trans-media vehicle[J]. Aerospace Power, 2020(1): 12-15.
|
[49] |
吕达, 苏浩秦, 李筠, 等. 变形仿生飞翼跨介质无人机外形设计与航行仿真[J]. 兵器装备工程学报, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009Lü Da, Su Haoqin, Li Yun, et al. Configuration design and navigation simulation of deformable bionic flying-wing aerial-aquatic unmanned vehicles[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009
|
[50] |
罗剑桥, 刘晓东, 马文朝, 等. 组合仿生跨介质飞行器设计及流固耦合性能研究[J]. 无人系统技术, 2022, 5(6): 28-39.Luo Jianqiao, Liu Xiaodong, Ma Wenchao, et al. Design of combined bionic trans-media vehicle and research on fluid-solid coupling performance[J]. Unmanned Systems Technology, 2022, 5(6): 28-39.
|
[51] |
高勇刚, 刘洋, 余晓京, 等. 固体火箭燃气超燃冲压发动机燃烧组织技术研究[J]. 推进技术, 2019, 40(1): 140-150.Gao Yonggang, Liu Yang, Yu Xiaojing, et al. research on combustion organization technology of the solid rocket fuel gas scramjet[J]. Journal of Propulsion Technology, 2019, 40(1): 140-150.
|
[52] |
吴佳明, 杨玉新, 王纵涛, 等. 粉末发动机推进剂供料研究现状及展望[J]. 航空动力学报, 2024, 39(3): 219-228.Wu Jiaming, Yang Yuxin, Wang Zongtao, et al. Research progresses and prospect of powdered fuel engine propellant feeding[J]. Journal of Aerospace Power, 2024, 39(3): 219-228.
|
[53] |
段艳娟, 杨玉新, 黄礼铿, 等. 燃料预加热对超声速剪切掺混的增强效果[J]. 南京航空航天大学学报, 2023, 55(5): 827-838.Duan Yanjuan, Yang Yuxin, Huang Likeng, et al. Enhancement effect of fuel preheating on supersonic shear mixing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(5): 827-838.
|
[54] |
刘平安, 常浩, 李树声, 等. 含铝复合推进剂分布燃烧数值模拟[J]. 固体火箭技术, 2018, 41(2): 156-161,168. doi: 10.7673/j.issn.1006-2793.2018.02.004Liu Pingan, Chang Hao, Li Shusheng, et al. Numerical simulation of distributed combustion of the aluminized composite propellant[J]. Journal of Solid Rocket Technology, 2018, 41(2): 156-161,168. doi: 10.7673/j.issn.1006-2793.2018.02.004
|
[55] |
刘平安, 王良, 王璐. 固体火箭发动机零维两相燃烧室压强计算方法研究[J]. 推进技术, 2018, 39(2): 317-325.Liu Pingan, Wang Liang, Wang Lu. Research of two phase 0-D chamber pressure prediction method for solid rocket motor[J]. Journal of Propulsion Technology, 2018, 39(2): 317-325.
|
[56] |
Gao A, Techet A H. Design considerations for a robotic flying fish[C]//OCEANS'11 MTS/IEEE KONA. Waikoloa, HI, US: IEEE, 2011.
|
[57] |
Liang J B, Yang X, Wang T M, et al. Design and experiment of a bionic gannet for plunge-diving[J]. Journal of Bionic Engineering, 2013, 10(3): 282-291. doi: 10.1016/S1672-6529(13)60224-3
|
[58] |
姜琬, 贾重任, 卢芳春. 仿生系列跨介质新概念飞行器气水动布局设计[C]//第六届中国航空学会青年科技论坛文集(上册). 沈阳: 中国航空学会, 2014.
|
[59] |
史崇镔, 张桂勇, 孙铁志, 等. 跨介质航行器波浪环境入水流场演变和运动特性研究[J]. 宇航总体技术, 2020, 4(3): 34-44.Shi Chongbin, Zhang Guiyong, Sun Tiezhi, et al. Study on the flow field evolution and motion characteristics of trans-media vehicle under wave conditions[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 34-44.
|
[60] |
廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44-57.Liao Baoquan, Feng Jinfu, Qi Duo, et al. Aerodynamic and hydrodynamic characteristics analysis of morphing submersible aerial vehicle[J]. Flight Dynamics, 2016, 34(3): 44-57.
|
[61] |
李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024Li Hongyuan, Lü Kai, Chen Yingliang, et al. Structure design of a novel bionic water-air cross-domain vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024
|
[62] |
Hu J H, Xu B W, Feng J F, et al. Research on Water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering, 2017, 31(2): 202-209. doi: 10.1007/s13344-017-0024-3
|
[63] |
周航宇, 魏照宇, 祝发勋, 等. 海空跨域航行器研究现状及关键力学问题[J]. 力学与实践, 2024, 1-8.
|
[64] |
Dong L, Ding W, Wei Z, et al. Numerical study on the water entry of two-dimensional airfoils by BEM[J]. Engineering Analysis with Boundary Elements, 2023, 151: 83-100. doi: 10.1016/j.enganabound.2023.02.054
|
[65] |
侯东伯. 运动体触水滑跳过程运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
[66] |
Li C H, Wang C, Wei Y J, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities[J]. International Journal of Multiphase Flow, 2020, 129: 103339. doi: 10.1016/j.ijmultiphaseflow.2020.103339
|
[67] |
Li C H, Wang C, Wei Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301. doi: 10.1016/j.jfluidstructs.2021.103301
|
[68] |
李良博, 杨宇, 梁爽, 等. 水空两栖多旋翼飞行器出水控制及参数整定[J]. 舰船科学技术, 2023, 45(7): 85-92. doi: 10.3404/j.issn.1672-7649.2023.07.018
|
[69] |
赵英杰. 小型无人跨介质航行器结构设计及动力学特性分析与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
[70] |
徐仁, 鞠世琦, 詹祺, 等. 旋翼跨介质试验系统设计与性能实验研究[J]. 飞行力学, 2024, 43(3): 89-94.
|
[71] |
张硕, 张树新, 代季鹏. 小型跨介质无人机快速水空过渡设计与试验[J]. 飞行力学, 2021, 39(5): 77-81.
|
[72] |
Fan S, Shi D, Ma G, et al. Research on similarity of water entry load for scaled-down underwater vehicle based on different model test environments[J]. Ocean Engineering, 2023, 286: 115697.
|
[73] |
Yao X, Yang Z, Ma G, et al. Research on the characteristics and similarity relationships of impact load reduction of a vehicle entering water[J]. Applied Ocean Research, 2024, 142: 103814.
|
[74] |
李宜果, 王聪, 武雨嫣, 等. 跨介质航行体高速入水空泡壁面运动特性[J]. 兵工学报, 2022, 43(3): 574-585. doi: 10.12382/bgxb.2021.0145
|
[75] |
孙士明. 超空泡射弹小角度高速入水运动稳定机理研究[D]. 无锡: 中国舰船研究院, 2023.
|
[76] |
Lv Y, Huang B, Liu T, et al. The flow characteristics for gas jet in liquid crossflow with special emphasis on the vortex-cavity interaction[J]. European Journal of Mechanics - B/Fluids, 2024, 104: 136-49. doi: 10.1016/j.euromechflu.2023.12.002
|
[77] |
Zhang H-S, Huang B, Zhao X. Numerical investigation of wave-cylinder interaction based on a momentum source wave generation method[J]. Ocean Engineering, 2023, 288: 115893. doi: 10.1016/j.oceaneng.2023.115893
|
[78] |
胡汉铎, 宋彦萍, 俞建阳, 等. 翼型不确定性量化中正交匹配追踪的应用[J]. 航空学报, 2023, 44(18): 124-136.
|
[79] |
俞建阳. 带栅格翼的水下航行体三维流场数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
[80] |
管祥善, 孙鹏楠, 李江昊, 等. 基于光滑粒子流体动力学的波浪中航行体入水数值模拟[J]. 空气动力学学报, 2024, 42(2): 85-95. doi: 10.7638/kqdlxxb-2023.0080Guan Xiangshan, Sun Pengnan, Li Jianghao, et al. Numerical simulation of the water entry of projectiles in waves based on SPH method[J]. Acta Aerodynamica Sinica, 2024, 42(2): 85-95. doi: 10.7638/kqdlxxb-2023.0080
|
[81] |
Huang X T, Sun P N, Lü H G, et al. Water entry problems simulated by an axisymmetric SPH model with VAS scheme[J]. Journal of Marine Science and Application, 2022, 21(2): 1-15. doi: 10.1007/s11804-022-00265-y
|
[82] |
贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2021.
|
[83] |
李宏源, 邹勇, 邹宇城, 等. 仿生水-空跨介质航行器控制系统研究[J]. 舰船科学技术, 2023, 45(20): 79-82. doi: 10.3404/j.issn.1672-7649.2023.20.014Li Hongyuan, Zou Yong, Zou Yucheng, et al. Research on control system of bionic water-air cross domain vehicle[J]. Ship Science and Technology, 2023, 45(20): 79-82. doi: 10.3404/j.issn.1672-7649.2023.20.014
|
[84] |
崔佳鹏, 吴宇, 苟进展. 四轴八旋翼无人机入水轨迹优化方法研究[J]. 无人系统技术, 2022, 5(3): 50-63.Cui Jiapeng, Wu Yu, Gou Jinzhan. Trajectory optimization of coaxial eight-rotor vehicle dividing into water[J]. Unmanned Systems Technology, 2022, 5(3): 50-63.
|
[85] |
刘方, 肖金石, 韦建明, 等. 水下连续发射弹体干扰特性及发射时序优化[J]. 兵工学报, 2024, 45(1): 197-205.Liu Fang, Xiao Jinshi, Wei Jianming, et al. Interference characteristics and launch sequence optimization of projectiles launched successively underwater[J]. Acta Armamentarii, 2024, 45(1): 197-205.
|
[86] |
方尔正, 李宗儒, 桂晨阳. 穿海牵天 提升对潜通信保障能力—跨介质通信技术现状及展望[J]. 国防科技工业, 2022(2): 59-62.
|
[87] |
刘东林, 曾彬, 钟宏伟, 等. 海上跨介质通信技术发展分析[J]. 舰船科学技术, 2022, 44(24): 62-66. doi: 10.3404/j.issn.1672-7649.2022.24.013Liu Donglin, Zeng Bin, Zhong Hongwei, et al. A brief analysis on the development of cross-media communication technology[J]. Ship Science and Technology, 2022, 44(24): 62-66. doi: 10.3404/j.issn.1672-7649.2022.24.013
|
[88] |
何奇毅, 宗思光. 跨空水介质激光声技术发展分析与思考[J]. 激光与红外, 2019, 49(1): 3-8. doi: 10.3969/j.issn.1001-5078.2019.01.001He Qiyi, Zong Siguang. Analysis and thinking about the development of air and water crossed laser acoustic technology[J]. Laser & Infrared, 2019, 49(1): 3-8. doi: 10.3969/j.issn.1001-5078.2019.01.001
|
[89] |
赵兴康. 基于声学-光学体制的水空跨介质通信仿真及算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
[90] |
朱睿超, 高俊奇, 毛智能, 等. 基于磁感应的跨介质通信技术研究[J]. 数字海洋与水下攻防, 2022, 5(4): 335-341.Zhu Ruichao, Gao Junqi, Mao Zhineng, et al. Research on cross-medium communication technology based on magnetic induction[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 335-341.
|
[91] |
柯健. 海水-大气跨介质环境中LED可见光传输特性研究[D]. 西安: 西安理工大学, 2023.
|
[92] |
罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.Luo Hanjiang, Bu Fanfeng, Wang Jinglong, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90.
|