• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然空化尾空泡内超声速射流流场特性数值研究

曹越 俞建阳 汪思航 吕凌云 陈浮

曹越, 俞建阳, 汪思航, 等. 自然空化尾空泡内超声速射流流场特性数值研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0059
引用本文: 曹越, 俞建阳, 汪思航, 等. 自然空化尾空泡内超声速射流流场特性数值研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0059
CAO Yue, YU Jianyang, WANG Sihang, LV Lingyun, CHEN Fu. Numerical study of supersonic jet flow field characteristics in natural cavitating tail cavity[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0059
Citation: CAO Yue, YU Jianyang, WANG Sihang, LV Lingyun, CHEN Fu. Numerical study of supersonic jet flow field characteristics in natural cavitating tail cavity[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0059

自然空化尾空泡内超声速射流流场特性数值研究

doi: 10.11993/j.issn.2096-3920.2024-0059
基金项目: 自然科学基金(52006045).
详细信息
    作者简介:

    曹越:曹 越(2000-), 男, 在读硕士, 主要研究方向为跨介质多相耦合流动方向

  • 中图分类号: TJ763; V238

Numerical study of supersonic jet flow field characteristics in natural cavitating tail cavity

  • 摘要: 为揭示自然空化尾空泡内超声速流场的演化规律与空泡内部的流场结构, 文中基于VOF多相流模型, 对自然空化尾空泡内超声速射流流场展开研究, 分析了空泡内超声速射流流场的演化规律, 对比了不同空化数以及不同来流攻角下的空泡内部流场参数的分布, 得出如下结论: 自然空化尾空泡在超声速射流入射后, 空泡形态较稳定, 其演化主要集中在空泡尾部闭合处; 空泡内超声速射流流场发展主要受回射流影响, 无来流攻角时受回射流冲击, 射流轴向发展受抑, 轴向射流出现“回缩”现象; 有来流攻角时, 回射流位置发生偏移, 其剪切卷吸作用占主导, 射流轴向发展迅速; 航行体姿态的稳定性主要受来流冲击和表面高压区分布的影响, 空化数较小时, 增大来流攻角可大幅度增加航行体俯仰力矩。

     

  • 图  1  喷管结构参数

    Figure  1.  Nozzle construction parameters

    图  2  数值计算模型

    Figure  2.  Numerical calculation model

    图  3  网格示意图

    Figure  3.  Schematic diagram of meshing

    图  4  喷管几何尺寸

    Figure  4.  Nozzle geometry

    图  5  壁面压力实验与数值模拟对比图

    Figure  5.  Comparison of wall pressure experiment and numerical simulation

    图  6  数值模拟结果与实验结果对比

    Figure  6.  Comparison of numerical simulation results with experimental results

    图  7  来流攻角0°空化数0.06不同时刻空泡形态轮廓

    Figure  7.  Inflow angle 0° cavitation number 0.06 cavitation shape profile at different times

    图  8  尾空泡形态演化过程

    Figure  8.  Morphological evolution of tail vacuoles

    图  9  空泡内射流初期流场演化过程

    Figure  9.  Evolution of initial flow field of jet in cavity

    图  10  空泡内射流中后期流场演化过程

    Figure  10.  The evolution process of the flow field in the middle and late period of the cavity jet

    图  11  尾空泡内流场细节

    Figure  11.  Detail of the flow field within the tail cavitation

    图  12  射流入射后空泡内部压力场分布

    Figure  12.  Distribution of the pressure field inside the cavitation after the jet injects

    图  13  回射流冲击后航行体底部压力分布

    Figure  13.  Pressure distribution at the bottom of the vehicle after the impact of the retro jet

    图  14  航行体底部监测点压力

    Figure  14.  Monitoring point pressure at the bottom of the vehicle

    图  15  射流核心区轴线监测点压力

    Figure  15.  Pressure at the monitoring point on the axis of the core area of the jet

    图  16  空化数0.06不同攻角射流流场相分布

    Figure  16.  Cavitation number 0.06 Phase distribution of jet flow field at different angles of attack

    图  17  流场结构细节

    Figure  17.  Flow field structure details

    图  18  不同来流攻角下回射流对超声速射流的影响

    Figure  18.  Effect of backjet on supersonic jet under different angles of attack

    图  19  空化数0.06不同来流攻角下监测点P7压力值

    Figure  19.  Cavitation number 0.06 P7 pressure value of monitoring point at different inlet attack angles

    图  20  不同空化数和来流攻角下航行体表面空化泡分布

    Figure  20.  Distribution of cavitation bubbles on the surface of the vehicle under different cavitation numbers and incoming angles of attack

    图  21  来流攻角下航行体力学分布特性

    Figure  21.  Schematic diagram of the attitude change of the aircraft hull

    图  22  航行体附体空泡及周围压力场的分布

    Figure  22.  The distribution of cavitation and surrounding pressure field in the body of the vehicle

    图  23  不同空化数及来流攻角下航行体俯仰力矩随时间的变化

    Figure  23.  Variation of pitching moment of the vehicle with different cavitation numbers and incoming angles of attack

    图  24  空化数0.04来流攻角2°航行体附体空泡及周围压力场的变化

    Figure  24.  The cavitation number is 0.04, the angle of attack is 2°, changes in cavitation on the surface of the vehicle and the surrounding pressure field

    表  1  参数列表

    Table  1.   List of parameters

    工况空化数σ来流攻角
    Case00.06
    Case10.06
    Case20.06
    Case30.04
    Case40.04
    Case50.04
    Case60.02
    Case70.02
    Case80.02
    下载: 导出CSV
  • [1] 刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120 doi: 10.11883/bzycj-2022-0509

    Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
    [2] 赵小宇, 向敏, 张为华, 等. 超音速尾流作用下通气空泡稳定性及闭合位置数值研究[J]. 力学学报, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346

    Zhao Xiaoyu, Xiang Min, Zhang Weihua, et al. Numerical study on the stability and closure position of ventailated cavity with a supersonic tail jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346
    [3] 许海雨, 罗凯, 黄闯, 等. 通气超空化对水下火箭发动机性能影响[J]. 哈尔滨工业大学学报, 2021, 53(6): 41-47.

    Xu Haiyu, Luo Kai, Huang Chuang, et al. Influence of ventilated supercavitation on underwater rocket engine[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 41-47.
    [4] Kinzel P M , Krane H M , Kirschner N I , et al. A numerical assessment of the interaction of a supercavitating flow with a gas jet[J]. Ocean Engineering, 2017, 136304-313.
    [5] 张春, 王宝寿. 水下航行体超声速射流与尾空泡耦合作用初期的流场特性[J]. 兵工学报, 2022, 43(7): 1685-1694.

    Zhang Chun, Wang Baoshou. Flow field characteristics of the early-stage coupling interaction between supersonic jet and tail cavity of underwater vehicles[J]. Acta Armamentarii, 2022, 43(7): 1685-1694.
    [6] 陈玮琪. 闭合在可压气体射流上的空泡数学模型[J]. 船舶力学, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001

    Chen Weiqi. Mathematical Model of Cavity Closure on a Compressible Gas Jet[J]. Journal of Ship Mechanics, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001
    [7] 党建军, 刘统军, 胥银. 尾部喷流对定常超空泡形态影响的数值研究[J]. 水下无人系统学报, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013

    Dang Jianjun, Liu Tongjun, Xu Yin. Numerical Simulation of Influence of Tail Jet on Steady Supercavitation Configuration[J]. Journal of Unmanned Undersea Systems, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013
    [8] 胡勇, 陈鑫, 鲁传敬, 等. 水下航行体尾喷燃气与通气超空泡相互作用的研究[J]. 水动力学研究与进展A辑, 2008, 23(4): 438-445.

    Hu Yong, Chen Xin, Lu Chuanjing, et al. Study on the interaction between ventilated cavitating flow and exhausted gas of an underwater vehicle[J]. Journal of Hydrodynamics, 2008, 23(4): 438-445.
    [9] 舒畅, 宫兆新, 刘桦. 自然超空泡与尾喷流相互作用的数值模拟[J]. 力学季刊, 2023, 44(1): 15-30.
    [10] 赵小宇, 向敏, 刘波, 等. 通气空泡与超音速尾喷流耦合作用实验研究[J]. 国防科技大学学报, 2021, 43(5): 53-60. doi: 10.11887/j.cn.202105006

    Zhao Xiaoyu, Xiang Min, Liu Bo, et al. Experimental study on the coupling effect of ventilated cavity and supersonic tail jet[J]. Journal of National University of Defense Technology, 2021, 43(5): 53-60. doi: 10.11887/j.cn.202105006
    [11] 裴譞, 张宇文, 孟生, 等. 超空泡航行器尾喷管实验研究[J]. 应用力学学报, 2010, 27(3): 584-588+650.

    Pei Huan, Zhang Yuwen, Meng Sheng, et al. Experimental study on the influence of tail-pipe on underwater supercavitation vehicle model[J]. Chinese Journal of Applied Mechanics, 2010, 27(3): 584-588+650.
    [12] 陈学军, 王瑞, 祁晓斌, 等. 燃气尾喷对水下航行体通气空泡形态及表面压力的影响[J]. 固体火箭技术, 2023, 46(4): 521-527. doi: 10.7673/j.issn.1006-2793.2023.04.05

    Chen Xuejun, Wang Rui, Qi Xiaobin, et al. Influence of exhausted gas tail jet on ventilated cavitation shape and surface pressure of underwater vehicle[J]. Journal of Solid Rocket Technology, 2023, 46(4): 521-527. doi: 10.7673/j.issn.1006-2793.2023.04.05
    [13] 许昊, 王聪, 陆宏志, 等. 水下超声速气体射流诱导尾空泡实验研究[J]. 物理学报, 2018, 67(1): 191-204. doi: 10.7498/aps.66.20171617

    Xu Hao, Wang Cong, Lu Hongzhi, et al. Experimental study on submerged supersonic gaseous jet induced tail cavity[J]. Acta Physica Sinica, 2018, 67(1): 191-204. doi: 10.7498/aps.66.20171617
    [14] Moeny J M, Krane H M, Kirschner N I, et al. Jet-supercavity interaction: insights from experiments[J]. Journal of Physics: Conference Series, 2015, 656(1): 012162-012162.
    [15] Hunter C A. Experimental investigation of separated nozzle flows[J]. Journal of Propulsion & Power, 2004, 20(3): 527-532.
    [16] HRUBES J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-06-01
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回
    服务号
    订阅号