• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机森林动态集成的水下尺度目标识别

曹涛 邓剑晶 岳玲 李永胜

曹涛, 邓剑晶, 岳玲, 等. 基于随机森林动态集成的水下尺度目标识别[J]. 水下无人系统学报, 2024, 32(3): 552-557 doi: 10.11993/j.issn.2096-3920.2024-0054
引用本文: 曹涛, 邓剑晶, 岳玲, 等. 基于随机森林动态集成的水下尺度目标识别[J]. 水下无人系统学报, 2024, 32(3): 552-557 doi: 10.11993/j.issn.2096-3920.2024-0054
CAO Tao, DENG Jianjing, YUE Ling, LI Yongsheng. Underwater Target Recognition Based on Dynamic Ensemble of Random Forest[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 552-557. doi: 10.11993/j.issn.2096-3920.2024-0054
Citation: CAO Tao, DENG Jianjing, YUE Ling, LI Yongsheng. Underwater Target Recognition Based on Dynamic Ensemble of Random Forest[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 552-557. doi: 10.11993/j.issn.2096-3920.2024-0054

基于随机森林动态集成的水下尺度目标识别

doi: 10.11993/j.issn.2096-3920.2024-0054
详细信息
    作者简介:

    曹涛:曹 涛(1976-), 男, 硕士, 高级工程师, 主要研究方向为水声装备科研管理

  • 中图分类号: TJ630.34; U674

Underwater Target Recognition Based on Dynamic Ensemble of Random Forest

  • 摘要: 正确识别目标是水下声自导武器攻击敌方目标的关键。文中提出一种基于动态选择集成技术的水下声自导武器实时目标识别方法。利用水下声自导武器主动宽带探测波形照射下目标不同的反射特性, 从目标宽带相关检测输出提取了能量分布和空间分布统计特征, 并构建了基于随机森林的动态选择集成模型, 利用海试数据集进行训练与测试。仿真分析表明, 文中所提出的动态集成模型识别效果优于其他分类算法, 可以较好地应用于水下声自导武器目标识别中。

     

  • 图  1  特征可视化结果

    Figure  1.  Visualization results of features

    图  2  K均值聚类算法描述

    Figure  2.  Description of K-means clustering algorithm

    图  3  不同算法识别正确率直方图

    Figure  3.  Histograms of recognition accuracy for different algorithms

    图  4  不同算法ROC曲线比较

    Figure  4.  ROC curves comparison of different algorithms

    图  5  不同算法F1值直方图

    Figure  5.  Histograms of F1 value for different algorithms

    图  6  不同k值下算法正确率

    Figure  6.  Algorithm accuracy value under different k value

    表  1  二分类混淆矩阵

    Table  1.   Two-class confusion matrix

    真实情况预测结果
    正例反例
    正例NTPNFN
    反例NFPNTN
    下载: 导出CSV

    表  2  不同算法ROC曲线下面积值

    Table  2.   The area under the curve of different algorithms

    算法均值标准差
    DT0.8810.030
    KNN0.9700.030
    GBDT0.9750.008
    SVM0.9650.015
    RF0.9640.010
    DES0.9760.007
    下载: 导出CSV

    表  3  不同算法的精确率和召回率

    Table  3.   The precision rate and recall rate for different algorithms

    算法精确率召回率
    DT0.892±0.0400.912±0.016
    KNN0.930±0.0380.909±0.025
    GBDT0.935±0.0290.915±0.019
    SVM0.875±0.0400.932±0.020
    RF0.938±0.0290.926±0.016
    DES0.937±0.0270.944±0.019
    下载: 导出CSV
  • [1] 周德善, 李志舜, 朱邦元. 鱼雷自导技术[M]. 北京: 国防工业出版社, 2009.
    [2] 蒋兴舟. 鱼雷制导设计原理[M]. 武汉: 海军工程大学, 2001.
    [3] 何心怡, 高贺, 陈菁, 等. 鱼雷真假目标识别技术现状与展望[J]. 鱼雷技术, 2016, 24(1): 23-27.

    He Xinyi, Gao He, Chen Jing, et al. Current situation and prospect on torpedo's true/false target identification technologies[J]. Torpedo Technology, 2016, 24(1): 23-27.
    [4] 王明洲, 郝重阳, 黄晓文. 基于相关法方位分析的水下主动目标尺度识别研究[J]. 西北工业大学学报, 2003, 21(3): 317-320.

    Wang Mingzhou, Hao Chongyang, Huang Xiaowen. On underwater target dimension recognition based on bearings analysis of signal correlation feature[J]. Journal of Northwestern Polytechnical University, 2003, 21(3): 317-320.
    [5] 刘朝晖, 付战平, 王明洲. 基于方位走向法和互谱法的水中目标识别[J]. 兵工学报, 2006, 27(5): 932-935.

    Liu Zhaohui, Fu Zhanping, Wang Mingzhou. Underwater target identification based on the methods of bearing and cross-spectrum[J]. Acta Armamentarii, 2006, 27(5): 932-935.
    [6] 石敏, 陈立纲, 蒋兴舟, 等. 具有亮点和方位延展特征的线列阵声诱饵研究[J]. 海军工程大学学报, 2005, 17(1): 58-62.

    Shi Min, Chen Ligang, Jiang Xingzhou, et al. On linear array acoustic bait with light spot and azimuth-range extensi on feature[J]. Journal of Naval University of Engineering, 2005, 17(1): 58-62.
    [7] 樊书宏, 王英民, 岳玲, 等. 基于拖曳长线阵的水下目标模拟系统[J]. 系统仿真学报, 2012, 24(5): 1083-1087.

    Fan Shuhong, Wang Yingmin, Yue Ling, et al. Underwater target simulation system based on towed long line array[J]. Journal of System Simulation, 2012, 24(5): 1083-1087.
    [8] 徐枫, 严冰, 王海陆, 等. 水下声自导武器垂直目标亮点高分辨算法仿真与实验研究[J]. 鱼雷技术, 2009, 17(6): 35-40.

    Xu Feng, Yan Bing, Wang Hailu, et al. Simulation and experimental study high-resolution method for torpedo vertical highlights[J]. Torpedo Technology, 2009, 17(6): 35-40.
    [9] Meng Q, Yang S, Piao S. The classification of underwater acoustic target signals based on wave structure and support vector machine[J]. J. Acoust. Soc. Am, 2014, 136: 2265.
    [10] Chen C, Fu J. Recognition method of underwater target radiated noise based on convolutional neural network[J]. Acoust. Technol, 2019, 38: 424.
    [11] Li C, Huang Z Q, Xu J, et al. Underwater target classification using deep learning[C]//Oceans 2018. Charleston, US: IEEE, 2018.
    [12] Lee S, Seo I, Seok J, et al. Active sonar target classification with power-normalized cepstral coefficients and convolutional neural network[J]. Appl. Sci, 2020, 10: 8450.
    [13] Kamal S, Chandran C S, Supriya M H. Passive sonar automated target classifier for shallow waters using end-to-end learnable deep convolutional LSTMs[J]. Eng. Sci. Technol. Int. J. 2021, 24: 860-871.
    [14] Feng S, Zhu X. A transformer-based deep learning network for underwater acoustic target recognition[J]. IEEE Geosci. Remote. Sens. Lett, 2022, 19: 1-5.
    [15] Deng J, Yang X, Liu L, et al. Real-time underwater acoustic homing weapon target recognition based on stacking technique of ensemble learning[J]. J. Mar. Sci. Eng, 2023, 11: 2305. doi: 10.3390/jmse11122305
    [16] King I, Yang H Q. Ensemble learning for imbalanced-commerce transaction anomaly classification[J]. Neural Information Processing, 2009, 58(63): 866-874.
    [17] Baumgartner D, Serpen G. Performance of global-local hybrid ensemble versus boosting bagging ensembles[J]. International Journal of Hybrid Intelligent Systems, 2012, 10(32): 25-37.
    [18] Azizi N, Farahn N, Ennajia A. New dynamic classifiers selection approach for handwritten recognition[C]//Proc of the 22nd International Conference on Artificial Neural Networks and Machine Learning. Berlin, Germany: Springer, 2012: 189-196.
    [19] Gao Y, Ji G, Yang Z, et al. A dynamic adaboost algorithm with adaptive changes of loss function[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1828-1839.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  19
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-04-16
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回
    服务号
    订阅号