• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下平台CO2基混合工质闭式循环温度适应性分析

冯佳琪 王俊鹏 陈真韬 骆政园 白博峰

冯佳琪, 王俊鹏, 陈真韬, 等. 水下平台CO2基混合工质闭式循环温度适应性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0051
引用本文: 冯佳琪, 王俊鹏, 陈真韬, 等. 水下平台CO2基混合工质闭式循环温度适应性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0051
FENG Jiaqi, WANG Junpeng, CHEN Zhentao, LUO Zhengyuan, BAI Bofeng. Temperature Adaptability Analysis of Closed Cycle using CO2-Based Mixture as the Working Fluid for Underwater Platforms[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0051
Citation: FENG Jiaqi, WANG Junpeng, CHEN Zhentao, LUO Zhengyuan, BAI Bofeng. Temperature Adaptability Analysis of Closed Cycle using CO2-Based Mixture as the Working Fluid for Underwater Platforms[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0051

水下平台CO2基混合工质闭式循环温度适应性分析

doi: 10.11993/j.issn.2096-3920.2024-0051
基金项目: 国家重点项目资助(No. 2020-****-ZD).
详细信息
    通讯作者:

    白博峰(1971-), 男, 博士, 教授, 主要研究方向为多相流动与传热.

  • 中图分类号: TJ630; TK121

Temperature Adaptability Analysis of Closed Cycle using CO2-Based Mixture as the Working Fluid for Underwater Platforms

  • 摘要: 超临界CO2布雷顿循环系统是水下平台动力技术的重要发展方向, 但由于深海低温较远离CO2临界温度致使循环系统存在温度适应性问题。文中提出了利用CO2基混合工质改善循环温度适应性并进一步优化循环性能的方案, 建立了简单回热循环热力学模型, 分析了CO2基混合工质临界参数随加入气体种类、质量分数的变化, 阐明了压缩机入口状态参数对CO2基混合工质闭式循环热力学性能的影响规律, 探讨了混合工质拟临界点位置对回热器夹点、热惯性等的影响。结果表明: 低临界参数混合工质循环可进一步扩大循环温度范围、压比以改善循环热力学性能, 但仅扩大温度范围而降低压比可能会对其造成不利于影响; 综合考虑循环热效率、比功、回热器内部夹点及热惯性, CO2/Xe(0.5/0.5)跨临界朗肯循环、CO2/SF6(0.9/0.1)跨临界液体布雷顿循环以及CO2/SF6(0.5/0.5)跨临界朗肯循环较超临界CO2布雷顿循环热效率最大可提高3.79个百分点、比功最大可提升31.6%, 回热器夹点位于冷端并未加剧其热惯性, 不会减缓系统响应速度。

     

  • 图  1  超临界CO2简单回热循环构型图

    Figure  1.  Configuration diagram of supercritical CO2 simple recuperation cycle

    图  2  简单回热循环的T-s

    Figure  2.  T-s diagram of a simple regenerative cycle

    图  3  混合工质临界参数: (a)临界温度, (b)临界压力

    Figure  3.  Critical parameters of mixed working fluid

    图  4  不同混合工质、不同循环的热效率对比: (a) CO2/Kr, SBC, TLBC; (b) CO2/Kr, TGBC, TRC; (c) CO2/Xe, SBC, TLBC; (d) CO2/Xe, TGBC, TRC; (e) CO2/SF6, SBC, TLBC; (f) CO2/SF6, TGBC, TRC; (g) CO2/He, SBC, TLBC; (h) CO2/Ne, SBC, TLBC

    Figure  4.  Comparison of thermal efficiency with different mixed working fluids and different cycles

    图  5  纯质CO2与混合工质闭式循环的比功对比

    Figure  5.  Comparison of specific power between pure CO2 and mixed working fluid closed cycle

    图  6  不同循环中工质cp峰值在热交换器中的分布: (a) CO2/Xe(0.5/0.5)跨临界TRC,(b)CO2/SF6(0.9/0.1)跨临界TLBC循环, (c)CO2/SF6(0.5/0.5)跨临界TRC

    Figure  6.  Distribution of cp peak value of working fluid in heat exchanger

    图  7  不同循环中回热器热冷侧温度及温差分布

    Figure  7.  Temperature distribution and temperature difference between hot and cold sides of regenerator

    表  1  工质性质参数

    Table  1.   Table of working fluid property parameters

    Tcr (℃)Pcr (MPa)ρcr (kg/m3)λ (W/m·K)ν (μPa·s)M (g/mol)
    Ar−122.464.86535.600.0 19024.2039.9
    Ne−228.752.66486.310.0 51733.4620.2
    He−267.950.2369.580.1 64320.974.0
    Kr−63.675.53909.210.0 10227.2483.8
    Xe16.585.841102.900.0 06024.99131.3
    N2−146.963.40313.300.0 27618.9528.0
    O2−118.575.04436.140.0 28321.9332.0
    SF645.573.76742.300.1 70842.37146.0
    CO230.987.38467.600.0 19016.1244.0
    下载: 导出CSV
  • [1] 潘光, 宋保维, 黄桥高, 施瑶. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报 2017, 25(2): 44-51.

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44-51.
    [2] 邱志明, 马焱, 孟祥尧, 陈建华, 冯炜. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报 2023, 31(1): 1-9.

    QIU Z M, MA Y, MENG X Y, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [3] ZHOU A , LI X , REN X , et al. Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery[J]. 2020.
    [4] 赵德材, 秦政, 刘惠民. 超临界二氧化碳布雷顿发电系统热力循环分析[J]. 能源与节能, 2018, 6: 2-6.

    ZHAO D C, QIN Z, LIU H M. Thermodynamic cycle analysis of supercritical carbon dioxide Brayton power generation system[J]. Energy and Energy Conservation, 2018, 6: 2-6.
    [5] FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. doi: 10.1016/0013-7480(68)90105-8
    [6] ANGELINO G. Real gas effects in carbon dioxide cycles[M]. American Society of Mechanical Engineers, 1969.
    [7] WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering 2021, 185: 116447.
    [8] HELD T J. Initial test results of a megawatt-class supercritical CO2 heat engine[C]. The 4th international symposium–supercritical CO2 power cycles. 2014: 9-10.
    [9] WRIGHT S A, CONBOY T M, RADEL R F, et al. Modeling and experimental results for condensing supercritical CO2 power cycles[R]. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2011.
    [10] JIANG Y, ZHAN L, TIAN X, et al. Thermodynamic performance comparison and optimization of sCO2 Brayton cycle, tCO2 Brayton cycle and tCO2 rankine cycle[J]. Journal of Thermal Science, 2023, 32(2): 611-627. doi: 10.1007/s11630-023-1708-z
    [11] LI Y, FENG J, ZHANG X, et al. Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle[J]. Energy, 2023, 284: 128733. doi: 10.1016/j.energy.2023.128733
    [12] LIU Y, ZHAO Y, YANG Q, et al. Thermodynamic comparison of CO2 power cycles and their compression processes[J]. Case Studies in Thermal Engineering, 2020, 21: 100712. doi: 10.1016/j.csite.2020.100712
    [13] PAN L, LI B, SHI W, et al. Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied Energy, 2019, 253: 113608. doi: 10.1016/j.apenergy.2019.113608
    [14] HABIBOLLAHZADE A, PETERSEN K, ALIAHMADI M, et al. Comparative thermoeconomic analysis of geothermal energy recovery via super/transcritical CO2 and subcritical organic Rankine cycles[J]. Energy Conversion and Management, 2022, 251: 115008. doi: 10.1016/j.enconman.2021.115008
    [15] WU P, MA Y, GAO C, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
    [16] LIU W, XU X, CHEN F, et al. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109581. doi: 10.1016/j.rser.2019.109581
    [17] WANG G, YANG Y, WANG S, et al. Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review[J]. Applied Energy, 2020, 278: 115752. doi: 10.1016/j.apenergy.2020.115752
    [18] SON S, HEO J Y, LEE J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
    [19] WANG R, WANG X, TIAN H, et al. Dynamic performance comparison of CO2 mixture transcritical power cycle systems with variable configurations for engine waste heat recovery[J]. Energies, 2019, 13(1): 32. doi: 10.3390/en13010032
    [20] WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
    [21] 王典乐, 黄彦平, 殷凯凯, 等. 低温热阱环境下超临界二氧化碳动力循环概念设计研究[J]. 原子能科学技术, 2023, 57(9): 1681-1690.

    WANG D L, HUANG Y P, YIN K K, et al. Optimization design research of supercritical carbon dioxide power cycle under low-temperature heat sink environment[J]. Atomic Energy Science and Technology, 2023, 57(9): 1681-1690.
    [22] LEMMON E W, BELL I H, HUBER M, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology[J]. Standard Reference Data Program, Gaithersburg, 2018.
    [23] FENG J, WANG J, CHEN Z, et al. Thermo-economic analysis of regenerative supercritical CO2 Brayton cycle considering turbomachinery leakage flow[J]. Energy, 2024, 290: 130098. doi: 10.1016/j.energy.2023.130098
    [24] HAQ M Z, AYON M S R, NOUMAN M W B, et al. Thermodynamic analysis and optimisation of a novel transcritical CO2 cycle[J]. Energy Conversion and Management, 2022, 273: 116407. doi: 10.1016/j.enconman.2022.116407
    [25] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chemical reviews, 2007, 107(6): 2365-2387. doi: 10.1021/cr068357u
    [26] 杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29.

    YANG F F, LIU H T, YANG Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29.
    [27] LI H, YAN J. Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes[J]. Applied Energy, 2009, 86(12): 2760-2770. doi: 10.1016/j.apenergy.2009.04.013
    [28] MAZZOCCOLI M, BOSIO B, ARATO E, et al. Comparison of equations-of-state with P–ρ–T experimental data of binary mixtures rich in CO2 under the conditions of pipeline transport[J]. The Journal of Supercritical Fluids, 2014, 95: 474-490. doi: 10.1016/j.supflu.2014.09.047
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-18
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-11-08

目录

    /

    返回文章
    返回
    服务号
    订阅号