• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海流扰动下ROV自适应神经网络控制

李相衡 闫昭琨 楼建坤 王鸿东

李相衡, 闫昭琨, 楼建坤, 等. 海流扰动下ROV自适应神经网络控制[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0045
引用本文: 李相衡, 闫昭琨, 楼建坤, 等. 海流扰动下ROV自适应神经网络控制[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0045
LI Xiangheng, YAN Zhaokun, LOU Jiankun, WANG Hongdong. Adaptive Neural Network Control of ROV under Ocean Current Disturbance[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0045
Citation: LI Xiangheng, YAN Zhaokun, LOU Jiankun, WANG Hongdong. Adaptive Neural Network Control of ROV under Ocean Current Disturbance[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0045

海流扰动下ROV自适应神经网络控制

doi: 10.11993/j.issn.2096-3920.2024-0045
基金项目: 国家自然科学基金面上项目(52271348).
详细信息
    通讯作者:

    王鸿东(1989-), 男, 副研究员, 主要研究方向: 舰艇智能控制技术.

  • 中图分类号: TJ630.1; U661.33

Adaptive Neural Network Control of ROV under Ocean Current Disturbance

  • 摘要: 针对水下遥控机器人(ROV)在模型参数不确定和海流扰动下的运动控制问题, 基于有限时间命令滤波和径向基(RBF)神经网络设计出一种自适应反步控制系统。首先, 基于马尔科夫过程构建随机海流模型, 并构建海流扰动下的ROV数学模型; 其次, 针对期望速度引入命令滤波技术, 以减少传统反步法迭代导数带来的计算量; 再次, 利用径向基神经网络对ROV模型的不确定项和外部未知扰动进行估计, 并设计自适应神经网络控制器; 最后, 利用李雅普诺夫稳定性理论证明了闭环控制系统的稳定性。仿真结果表明, 本文设计的控制器可以实现ROV航行的精确控制,并能够有效抑制模型的不确定项和海流扰动对ROV运动的影响。

     

  • 图  1  ROV的参考坐标系

    Figure  1.  References of ROV

    图  2  RBF神经网络结构及输入示意图

    Figure  2.  RBF neural network structure and input diagram

    图  3  海流扰动下ROV实际路径和期望路径

    Figure  3.  Actual path and desired path of ROV under ocean current disturbance

    图  4  ROV位姿跟踪曲线

    Figure  4.  Pose tracking curve of ROV

    图  5  不确定函数时间响应及其估计

    Figure  5.  Time response of uncertain functions and their estimation

    图  6  跟踪误差

    Figure  6.  Tracking error

    图  7  控制系统输入时间响应

    Figure  7.  Time response of the control system input

    图  8  外部海流扰动

    Figure  8.  External current disturbance

    表  1  控制系统性能量化分析

    Table  1.   Quantitative analysis of control system performance

    性能参数 ${E_{MAX}}$ ${M_{MAE}}$ ${R_{RMSE}}$
    $x/m$ 0.0 049 0.0 186 0.0 569
    $y/m$ 0.0 032 0.0 150 0.0 506
    $\psi /rad$ 0.0 001 0.0 223 0.1 416
    下载: 导出CSV

    表  2  RBF神经网络性能量化分析

    Table  2.   Quantitative analysis of RBF neural network performance

    性能参数 ${E_{MAX}}$ ${M_{MAE}}$ ${R_{RMSE}}$
    $ {\hat f_1} $ 0.0 717 0.1 034 0.4 411
    $ {\hat f_2} $ 0.1 321 0.3 843 1.2 340
    $ {\hat f_3} $ 0.0 395 0.2 476 1.0 525
    下载: 导出CSV
  • [1] 赵大刚, 张顺, 高适, 等. 海流对水下航行器运动及载荷影响研究综述[J]. 中国舰船研究, 2024, 19(5): 1-16.

    ZHAO D G, ZHANG S, GAO S, et al. Review of influence of underwater vehicle motion and load under current[J]. Chinese Journal of Ship Research, 2024, 19(5): 1-16.
    [2] Panda J P, Mitra A, Warrior H V. A review on the hydrodynamic characteristics of autonomous underwater vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021, 235(1): 15-29. doi: 10.1177/1475090220936896
    [3] 姚绪梁, 王晓伟, 蒋晓刚, 等. 海流干扰下的欠驱动AUV三维路径跟踪控制[J]. 哈尔滨工业大学学报, 2019, 51(3): 37-45. doi: 10.11918/j.issn.0367-6234.201709002

    YAO X L, WANG X W, JIANG X G, et al. Control for 3D path following of underactuated autonomous underwater vehicle under current disturbance[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 37-45. doi: 10.11918/j.issn.0367-6234.201709002
    [4] Huang B, Yang Q. Disturbance observer-based double-loop sliding-mode control for trajectory tracking of work-class ROVs[J]. Journal of Marine Science and Engineering, 2022, 10(5): 601. doi: 10.3390/jmse10050601
    [5] Sakiyama J, Motoi N. Position and attitude control method using disturbance observer for station keeping in underwater vehicle[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. Washington, DC: IEEE, 2018: 5469-5474.
    [6] GUERRERO J, TORRES J, CREUZE V, et al. Adaptive disturbance observer for trajectory tracking control of underwater vehicles[J]. Ocean Engineering, 2020, 200(15): 107080.
    [7] 陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98-108

    CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108.
    [8] PATRE B M, LONDHE P S, WAGHMARE L M, et al. Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle[J]. Ocean Engineering, 2018, 159: 372-387. doi: 10.1016/j.oceaneng.2018.03.082
    [9] QIU J, MA M, WANG T, et al. Gradient descent-based adaptive learning control for autonomous underwater vehicles with unknown uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5266-5273. doi: 10.1109/TNNLS.2021.3056585
    [10] 张帅军, 刘卫东, 李乐, 等. 基于RBF神经网络补偿的ROV运动控制算法[J]. 水下无人系统学报, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033

    ZHANG S J, LIU W D, LI L, et al. ROV motion control algorithm based on RBF neural network compensation[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033
    [11] LI D, HAN H, QIAO J. Deterministic learning-based adaptive neural control for nonlinear full-state constrained systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(8): 5002-5011.
    [12] CHU Z, ZHU D, YANG S X. Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle[J]. IEEE Transactions on Neural networks and learning systems, 2016, 28(7): 1633-1645.
    [13] ANDERLINI E, PARKER G G, THOMAS G. Control of a ROV carrying an object[J]. Ocean Engineering, 2018, 165(1): 307-318.
    [14] LONG C, QIN X, BIAN Y, et al. Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC[J]. Ocean Engineering, 2021, 241(1): 109991.
    [15] GARCÍA-VALDOVINOS L G, FONSECA-NAVARRO F, AIZP- URU-ZINKUNEGI J, et al. Neuro-sliding control for underwater ROV’s subject to unknown disturbances[J]. Sensors, 2019, 19(13): 2943. doi: 10.3390/s19132943
    [16] CUI R, YANG C, LI Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 1019-1029. doi: 10.1109/TSMC.2016.2645699
    [17] HUANG B, YANG Q. Disturbance observer-based double-loop sliding-mode control for trajectory tracking of work-class ROVs[J]. Journal of Marine Science and Engineering, 2022, 10(5): 601. doi: 10.3390/jmse10050601
    [18] 罗一汉, 吴家鸣, 苏柏铭, 等. 考虑模型偏差和时变扰动的水下机器人轨迹跟踪控制[J]. 舰船科学技术, 2023, 45(24): 108-115. doi: 10.3404/j.issn.1672-7649.2023.24.020

    LUO Y H, WU J M, SU B M, et al. Trajectory tracking control of underwater vehicle considering model uncertainty and time-varying disturbance[J]. Ship Science and Technology, 2023, 45(24): 108-115. doi: 10.3404/j.issn.1672-7649.2023.24.020
    [19] MUÑOZ-VÁZQUEZ A J, RAMÍREZ-RODRÍGUEZ H, PARRA-VEGA V, et al. Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances[J]. International Journal of Control, Automation and Systems, 2017, 15: 1314-1321. doi: 10.1007/s12555-015-0210-0
    [20] CHO G R, LI J H, PARK D, et al. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation[J]. Ocean Engineering, 2020, 201: 107131. doi: 10.1016/j.oceaneng.2020.107131
    [21] 谢争明. 全驱动自主水下机器人回收动力定位控制研究[D]. 江苏: 江苏科技大学, 2021.
    [22] 刘丽萍, 王红燕. 基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 745-753.

    LIU L P, WANG H Y. Adaptive backstepping sliding mode for underactuated auv trajectory tracking based on ocean current observer[J]. Journal of Tianjin University, 2020, 53(7): 745-753.
    [23] LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International journal of Control, 2003, 76(9-10): 924-941. doi: 10.1080/0020717031000099029
    [24] YU J, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180. doi: 10.1016/j.automatica.2018.03.033
    [25] BUTCHER J C. Numerical methods for ordinary differential equations[M]. John Wiley & Sons, 2016.
    [26] DAI S L, WANG C, LUO F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 801-810. doi: 10.1109/TII.2012.2205584
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  34
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-07-12
  • 录用日期:  2024-07-18
  • 网络出版日期:  2024-10-09

目录

    /

    返回文章
    返回
    服务号
    订阅号