• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质飞潜器水面起降过程流场及运动特性研究

陆德顺 张少谦 王浩宇 孙铁志

陆德顺, 张少谦, 王浩宇, 等. 跨介质飞潜器水面起降过程流场及运动特性研究[J]. 水下无人系统学报, 2024, 32(3): 434-450 doi: 10.11993/j.issn.2096-3920.2024-0042
引用本文: 陆德顺, 张少谦, 王浩宇, 等. 跨介质飞潜器水面起降过程流场及运动特性研究[J]. 水下无人系统学报, 2024, 32(3): 434-450 doi: 10.11993/j.issn.2096-3920.2024-0042
LU Deshun, ZHANG Shaoqian, WANG Haoyu, SUN Tiezhi. Flow Field and Motion Characteristics of Trans-Medium Submersible during Take-off and Landing on Water Surface[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 434-450. doi: 10.11993/j.issn.2096-3920.2024-0042
Citation: LU Deshun, ZHANG Shaoqian, WANG Haoyu, SUN Tiezhi. Flow Field and Motion Characteristics of Trans-Medium Submersible during Take-off and Landing on Water Surface[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 434-450. doi: 10.11993/j.issn.2096-3920.2024-0042

跨介质飞潜器水面起降过程流场及运动特性研究

doi: 10.11993/j.issn.2096-3920.2024-0042
基金项目: 基础科研项目资助(JCKY2022110C018).
详细信息
    通讯作者:

    孙铁志(1986-), 男, 博士, 教授, 主要研究方向为跨介质水动力学.

  • 中图分类号: TJ630.1; U674

Flow Field and Motion Characteristics of Trans-Medium Submersible during Take-off and Landing on Water Surface

  • 摘要: 为探究跨介质飞潜器水面起降过程流场结构演变及自身运动特性, 基于计算流体动力学数值仿真技术, 耦合流体体积多相流模型、剪切应力传输 k-ω 湍流模型、Schnerr-Sauer空化模型以及Stokes 5阶非线性波理论, 构建了飞潜器水面起降的数值计算方法。分别对静水环境下飞潜器水面起飞过程、有/无波浪环境下飞潜器水面降落过程进行数值仿真, 分析了各过程飞潜器动力学响应、载荷变化情况以及自由液面流场演化过程。结果表明: 在整个静水环境下水面起飞过程中飞潜器均能保持稳定的姿态, 其周围流场结构及自由液面演化均具有强对称性; 在水面降落过程中, 飞潜器及导管底部受到较大的反向砰击力, 导致飞潜器姿态出现一定程度的振荡, 在经过多次衰减波动后能够快速恢复平稳状态;而波浪的存在会加大触水时刻飞潜器所受到的砰击载荷, 加剧飞潜器姿态的振荡, 延后姿态最终恢复平稳时间。

     

  • 图  1  计算模型几何尺寸

    Figure  1.  Geometric dimensions of computational model

    图  2  计算域设置

    Figure  2.  Setup of computing domain

    图  3  网格划分结果

    Figure  3.  Results of grid division

    图  4  静推仿真与试验结果对比

    Figure  4.  Comparison between simulation results and experiment results of static push

    图  5  风洞仿真与试验结果对比

    Figure  5.  Comparison between simulation results and experiment results of wind tunnel

    图  6  不同网格分辨率网格划分结果

    Figure  6.  Grid division results with different grid resolution

    图  7  楔形体入水空泡形态试验与仿真结果对比

    Figure  7.  Comparison of experimental and simulation results of wedge water-entry cavitation

    图  8  楔形体入水过程垂向位移时历曲线对比

    Figure  8.  Comparison of the time history curves of vertical displacement during wedge water-entry

    图  9  数值波浪水池模型

    Figure  9.  Model of numerical wave pool

    图  10  浪高仪布置情况

    Figure  10.  The layout of wave altimeter

    图  11  t=10 s时刻计算域中波浪波高分布情况

    Figure  11.  The wave height distribution in the calculation domain at time t=10 s

    图  12  x=2 m与x=4 m处波高时历曲线

    Figure  12.  The time history curves of wave height at x=2 m and x=4 m

    图  13  波浪环境下浮体垂向运动响应数值仿真与试验对比

    Figure  13.  Comparison between numerical simulation and experimental vertical motion response of floating body in wave environment

    图  14  起飞过程旋翼转速时历变化曲线

    Figure  14.  The time history curve of rotor speed during take-off process

    图  15  飞潜器起飞过程自由液面演变

    Figure  15.  Free liquid surface evolution during submersible take-off process

    图  16  飞潜器起飞过程俯仰角度时历曲线

    Figure  16.  The time history curve of submersible pitch angle during submersible take-off process

    图  17  飞潜器起飞过程轴向速度及位移时历曲线

    Figure  17.  The time history curves of submersible axial velocity and displacement during submersible take-off process

    图  18  飞潜器起飞过程旋翼截面流场发展

    Figure  18.  Fluid field evolution of rotor section during submersible take-off process

    图  19  飞潜器起飞过程轴向加速度时历曲线

    Figure  19.  The time history curves of submersible axial acceleration during submersible take-off process

    图  20  加速度峰值时刻自由液面演变结果

    Figure  20.  Evolution results of free liquid surface at peak acceleration time

    图  21  降落过程旋翼转速时历变化曲线

    Figure  21.  The time history curve of rotor speed during landing process

    图  22  飞潜器在静水环境下降落过程自由液面演变

    Figure  22.  Free liquid surface evolution during submersible landing process in a static water environment

    图  23  飞潜器降落过程俯仰角度时历曲线

    Figure  23.  The time history curve of submersible pitch angle during landing process

    图  24  触水后飞潜器俯仰姿态变化

    Figure  24.  Pitch attitude change of submersible after touching water

    图  25  飞潜器降落过程轴向速度及位移时历曲线

    Figure  25.  The time history curves of submersible axial velocity and displacement during landing process

    图  26  飞潜器降落过程轴向加速度时历曲线

    Figure  26.  The time history curves of submersible axial acceleration during landing process

    图  27  特殊时刻自由液面演变及飞潜器表面压力分布

    Figure  27.  Evolution of free liquid surface and surface pressure distribution of submersible at special times

    图  28  飞潜器在波浪环境下降落过程自由液面演变

    Figure  28.  Free liquid surface evolution during submersible landing process in wave environment

    图  29  飞潜器俯仰角度时历曲线对比

    Figure  29.  Comparison of pitch angle time history curves of submersible

    图  30  触水后飞潜器俯仰姿态变化对比

    Figure  30.  Comparison of pitch attitude change of submersible after touching water

    图  31  飞潜器轴向位移及速度时历曲线对比

    Figure  31.  Comparison of time history curves of submersible axial displacement and velocity

    图  32  飞潜器轴向加速度时历曲线对比

    Figure  32.  Comparison of axial acceleration time history curves of submersible

    图  33  t=1.549 s时刻波面演变及飞潜器表面压力分布对比

    Figure  33.  Comparison of wave surface evolution and surface pressure distribution of submersible at t=1.549 s

    表  1  不同网格分辨率设置及网格划分结果

    Table  1.   Different grid resolution settings and results of grid division

    网格分辨率基础网格尺寸/mm网格数量
    粗糙14.0195万
    中等10.0349万
    良好7.5609万
    下载: 导出CSV

    表  2  不同网格分辨率入水位移计算误差

    Table  2.   Calculation error of water-entry displacement with different grid resolution

    t/s 计算误差/%
    粗糙分辨率 中等分辨率 良好分辨率
    0.038 1 7.47 7.29 7.09
    0.087 4 3.80 3.53 3.27
    0.151 2 2.64 2.31 2.04
    0.222 6 3.99 3.60 3.32
    0.296 7 4.61 4.20 3.93
    下载: 导出CSV
  • [1] Yang X, Wang T, Liang J, et al. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle(AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74: 131-151. doi: 10.1016/j.paerosci.2014.12.005
    [2] Hong Y, Wang B, Liu H. Numerical study of hydrodynamic loads at early stage of vertical high-speed water entry of an axisymmetric blunt body[J]. Physics of Fluids, 2019, 31(10): 102105. doi: 10.1063/1.5121283
    [3] Song Z J, Duan W Y, Xu G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
    [4] Chen J, Xiao T, Wu B, et al. Numerical study of wave effect on water entry of a three-dimensional symmetric wedge[J]. Ocean Engineering, 2022, 250: 110800. doi: 10.1016/j.oceaneng.2022.110800
    [5] Liu Z, Shi Y, Wu K, et al. Experimental study on load characteristics of vehicle during high-speed water entry[J]. Ocean Engineering, 2023, 288: 116052. doi: 10.1016/j.oceaneng.2023.116052
    [6] Zhao C, Wang Q, Lu H, et al. Vertical water entry of a hydrophobic sphere into waves: Numerical computations and experiments[J]. Physics of Fluids, 2023, 35(7): 073324.
    [7] Li Z, Hu H, Wang C, et al. Hydrodynamics and stability of oblique water entry in waves[J]. Ocean Engineering, 2024, 292: 116506. doi: 10.1016/j.oceaneng.2023.116506
    [8] 王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(1): 39-48.
    [9] Hu J, Xu B, Feng J, et al. Research on water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering, 2017, 31: 202-209. doi: 10.1007/s13344-017-0024-3
    [10] 李鹏程. 航行体出水过程主承力舱段结构动力稳定性与优化设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [11] 谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104-121.

    Tan Junyi, Hu Junhua, Chen Guoming, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104-121.
    [12] Huang J, Liang J, Wang T, et al. Numerical analysis of the body, webbed-feet, and wings during cormorant’s take off[C]//2018 IEEE International Conference on Robotics and Biomimetics(ROBIO). Kuala Lumpur, Malaysia: IEEE, 2018: 94-99.
    [13] 云忠, 温猛, 罗自荣, 等. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.

    Yun Zhong, Wen Meng, Luo Zirong, et al. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(2): 407-415.
    [14] Hou T G, Yang X B, Wang T M, et al. Locomotor transition: How squid jet from water to air[J]. Bioinspiration & Biomimetics, 2020, 15(3): 036014.
    [15] 赵英杰. 小型无人跨介质航行器结构设计及动力学特性分析与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2021.
    [16] 史崇镔. 跨介质结构物出入水多相流体动力学特性研究[D]. 大连: 大连理工大学, 2021.
    [17] 张硕, 张树新, 代季鹏. 小型跨介质无人机快速水空过渡设计与试验[J]. 飞行力学, 2021, 39(5): 77-81, 94.

    Zhang Shuo, Zhang Shuxin, Dai Jipeng. Design and experiments of water-to-air rapid transitions for a small cross-medium UAV[J]. Flight Dynamics, 2021, 39(5): 77-81, 94.
    [18] Lu D, Xiong C, Zhou H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle[J]. Ocean Engineering, 2021, 219: 108324. doi: 10.1016/j.oceaneng.2020.108324
    [19] Lyu C, Lu D, Xiong C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [20] Wei Z, Teng Y, Meng X, et al. Lifting-principle-based design and implementation of fixed-wing unmanned aerial-underwater vehicle[J]. Journal of Field Robotics, 2022, 39(6): 694-711. doi: 10.1002/rob.22071
    [21] Steelant J, Dick E. Modeling of laminar-turbulent transition for high freestream turbulence[J]. Journal of Fluids Engineering, 2001, 123(1): 22-30. doi: 10.1115/1.1340623
    [22] Plesset M. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16: 277-282. doi: 10.1115/1.4009975
    [23] Fenton J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway Port Coastal and Ocean Engineering, 1985, 111(2): 216-234. doi: 10.1061/(ASCE)0733-950X(1985)111:2(216)
    [24] Kim J W, O’Sullivan J, Read A. Ringing analysis of a vertical cylinder by Euler overlay method[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. [S.l.]: American Society of Mechanical Engineers, 2012: 855-866.
    [25] Brandt J B. Small-scale propeller performance at low speeds[D]. Champaign County, Illinois: University of Illinois at Urbana-Champaign, 2005.
    [26] Gong K, Shao S, Liu H, et al. Two-phase SPH simulation of fluid-structure interactions[J]. Journal of Fluids and Structures, 2016, 65: 155-179. doi: 10.1016/j.jfluidstructs.2016.05.012
    [27] 陈程, 施文奎, 沈雁鸣, 等. 楔形体底升角对入水多相界面演化作用研究[J]. 水动力学研究与进展A辑, 2023, 38(5): 663-668.

    Chen Cheng, Shi Wenkui, Shen Yanming, et al. Study on effect of dead-rise angle on evolution of multiphase interface in wedge water entry problems[J]. Chinese Journal of Hydrodynamics, 2023, 38(5): 663-668.
    [28] Chen B, Ning D, Liu C, et al. Wave energy extraction by horizontal floating cylinders perpendicular to wave propagation[J]. Ocean Engineering, 2016, 121: 112-122. doi: 10.1016/j.oceaneng.2016.05.016
  • 加载中
图(33) / 表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  44
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-05-11
  • 录用日期:  2024-05-11
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    服务号
    订阅号