• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空海异构无人平台的水下目标搜索与跟踪

丁文俊 柴亚军 杨宇贤 刘佳敏 毛昭勇

丁文俊, 柴亚军, 杨宇贤, 等. 基于空海异构无人平台的水下目标搜索与跟踪[J]. 水下无人系统学报, 2024, 32(2): 237-249 doi: 10.11993/j.issn.2096-3920.2024-0037
引用本文: 丁文俊, 柴亚军, 杨宇贤, 等. 基于空海异构无人平台的水下目标搜索与跟踪[J]. 水下无人系统学报, 2024, 32(2): 237-249 doi: 10.11993/j.issn.2096-3920.2024-0037
DING Wenjun, CHAI Yajun, YANG Yuxian, LIU Jiamin, MAO Zhaoyong. Underwater Target Search and Tracking Based on Air-Sea Heterogeneous Unmanned Platform[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 237-249. doi: 10.11993/j.issn.2096-3920.2024-0037
Citation: DING Wenjun, CHAI Yajun, YANG Yuxian, LIU Jiamin, MAO Zhaoyong. Underwater Target Search and Tracking Based on Air-Sea Heterogeneous Unmanned Platform[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 237-249. doi: 10.11993/j.issn.2096-3920.2024-0037

基于空海异构无人平台的水下目标搜索与跟踪

doi: 10.11993/j.issn.2096-3920.2024-0037
基金项目: 国家自然科学基金项目(51909206); 中国博士后科学基金项目(2021M692616); 陕西省自然科学基础研究计划项目(2024JC-YBMS-300); 中央高校基本科研业务费专项资金项目(31020200QD044)
详细信息
    作者简介:

    丁文俊(1989-), 男, 博士, 副教授, 主要研究方向为水下无人系统、跨域协同及智能决策

  • 中图分类号: TJ630.32; U674

Underwater Target Search and Tracking Based on Air-Sea Heterogeneous Unmanned Platform

  • 摘要: 海上异构无人系统可有效提高复杂任务的完成效率。文中采用自主水下航行器(AUV)和无人机(UAV)来完成近海海域内未知水下目标的搜索与跟踪任务。首先, 描述了水下目标搜索跟踪任务, 将任务过程分为目标搜索和目标跟踪阶段, 2个阶段的目标分别是使AUV&UAV总搜索空间最大化以及AUV与水下目标的末端位置误差最小; 然后, 建立AUV&UAV跨域协同搜索模型, 并设定模型中AUV和UAV探测范围和通信距离等约束条件; 最后, 在跨域协同搜索与路径跟踪规划中, 基于传统粒子群算法, 加入自适应学习因子调控策略和精英保存策略, 生成搜索与跟踪路径。仿真实验表明, 采用改进粒子群优化算法的AUV&UAV异构无人系统能够更高效地完成水下目标搜索与跟踪任务。

     

  • 图  1  自由地图模型示意图

    Figure  1.  Diagram of free map model

    图  2  UAV与AUV模型示意图

    Figure  2.  Model of UAV and AUV

    图  3  IPSO算法流程图

    Figure  3.  IPSO algorithm flow chart

    图  4  基于PSO算法的任务全过程二维路径曲线

    Figure  4.  The two-dimensional path map of the whole process of a task based on PSO algorithm

    图  5  基于PSO算法的任务全过程三维路径图

    Figure  5.  3D path map of the whole process of the task based on PSO algorithm

    图  6  基于PSO算法的全过程无人平台间距变化曲线

    Figure  6.  The whole process of unmanned platform spacing variation curve based on PSO algorithm

    图  7  基于IPSO算法的任务全过程的二维路径图

    Figure  7.  The two-dimensional path map of the whole process of a task based on IPSO algorithm

    图  8  基于IPSO算法的任务全过程三维路径图

    Figure  8.  3D path map of the whole process of the task based on IPSO algorithm

    图  9  基于IPSO算法的全过程无人平台间距变化曲线

    Figure  9.  The whole process of unmanned platform spacing variation curves based on IPSO algorithm

    表  1  UAV、AUV及二维定深运动目标的初始状态信息

    Table  1.   Initial state information of UAV, AUV and two-dimensional depth-fixed moving target

    运动物体坐标/m速度
    /(m/s)
    姿态角/rad
    xyz$\varphi $$\theta $
    UAV20005015π/6
    AUV050−50800
    目标1 0001 000−50500
    下载: 导出CSV

    表  2  基于PSO算法任务的相关参数

    Table  2.   Other data of task based on PSO algorithm

    参数数值
    TU/s41.00
    TA/s241.00
    TA-T/s400.00
    LA-T/m1.86
    下载: 导出CSV

    表  3  基于IPSO算法任务的相关参数

    Table  3.   Other data of UAV & AUV heterogeneous system task based on IPSO algorithm

    参数数值
    TU/s35.00
    TA/s180.00
    TA-T/s344.00
    LA-T/m0.69
    下载: 导出CSV

    表  4  PSO算法和IPSO算法仿真结果

    Table  4.   Some experimental results of PSO algorithm

    参数PSO仿真结果平均值
    TU/s414037543240.8
    TA/s241227244261217238
    TA-T/s400366384416341381.4
    LA-T/m1.862.682.231.561.722.01
    参数IPSO仿真结果平均值
    TU/s353025304234.4
    TA/s180217203175210197
    TA-T/s344347253230361307
    LA-T/m1.691.830.831.531.621.5
    下载: 导出CSV
  • [1] 郝紫霄, 王琦. 基于声呐图像的水下目标检测研究综述[J]. 水下无人系统学报, 2023, 31(2): 339-348.

    Hao Zixiao, Wang Qi. Underwater target detection based on sonar image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348.
    [2] 熊伟, 朱洪峰, 崔亚奇. 在线学习的循环自适应机动目标跟踪算法[J]. 航空学报, 2022, 43(5): 444-456.

    Xiong Wei, Zhu Hongfeng, Cui Yaqi, et al. Recurrent adaptive maneuvering target tracking algorithm based on online learning[J]. Acta Aeronautica ET Astronautica Sinica, 2022, 43(5): 444-456.
    [3] 张鑫明, 韩明磊, 余益锐, 等. 潜艇与UUV协同作战发展现状及关键技术[J]. 水下无人系统学报, 2021, 29(5): 497-508.

    Zhang Xinming, Han Minglei, Yu Yirui, et al. Development and key technologies of submarine-UUV cooperative operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 497-508.
    [4] 王晓慧, 黄刚, 丁洁, 等. 基于改进型ADRC算法的无人水面侦察艇轨迹跟踪[J]. 水下无人系统学报, 2021, 29(3): 286-292.

    Wang Xiaohui, Huang Gang, Ding Jie, et al. Trajectory tracking of unmanned surface reconnaissance vessel based on improved ADRC algorithm[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 286-292.
    [5] 郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001

    Guo Yinjing, Bao Jiankang, Liu Qi, et al. Research progress of real-time obstacle avoidance algorithms for unmanned undersea vehicle: A review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001
    [6] 杨勇, 丁勇, 黄鑫城. 改进APF与Bezier相结合的多无人机协同避碰航路规划[J]. 电光与控制, 2018, 25(11): 36-41, 47. doi: 10.3969/j.issn.1671-637X.2018.11.007

    Yang Yong, Ding Yong, Huang Xincheng. Multi-UAV cooperative collision avoidance route planning based on improved artificial potential field and bezier curve[J]. Electronics Optics & Control, 2018, 25(11): 36-41, 47. doi: 10.3969/j.issn.1671-637X.2018.11.007
    [7] Zu W, Fan G, Gao Y, et al. Multi-UAVs cooperative path planning method based on improved RRT algorithm[C]//2018 IEEE International Conference on Mechatronics and Auto-mation(ICMA). Changchun, Jilin, China: IEEE, 2018: 1563-1567.
    [8] 包昕幼. 浅水区域无人探测艇编队巡航路径规划研究[D]. 广州: 华南理工大学, 2018.
    [9] Liu Y, Song R, Bucknall R, et al. Intelligent multi-task allocation and planning for multiple unmanned surface vehicles(USVs) using self-organising maps and fast marching method[J]. Information Sciences: An International Journal, 2019, 496: 180-197. doi: 10.1016/j.ins.2019.05.029
    [10] Han G J, Long X H, Zhu C, et al. A high-availability data collection scheme based on multi-AUVs for underwater sensor networks[J]. IEEE Transactions on Mobile Computing, 2019, 19(5): 1010-1022.
    [11] 马朋, 张福斌, 徐德民. 基于距离量测的双领航多AUV协同定位队形优化分析[J]. 控制与决策, 2018, 33(2): 256-262.

    Ma Peng, Zhang Fubin, Xu Demin. Optimality analysis for formation of MAUV cooperative localization with two leaders based on range measurements[J]. Control and Decision, 2018, 33(2): 256-262.
    [12] Ridao P, Carreras M, Ribas D, et al. Intervention AUVs: The next challenge[J]. Annual Reviews in Control, 2015, 40: 227-241. doi: 10.1016/j.arcontrol.2015.09.015
    [13] Ni J J, Liu Y, Wu L Y, et al. An improved spinal neural system-based approach for heterogeneous AUVs cooperative hunting[J]. International Journal of Fuzzy Systems, 2018, 20(2): 672-686. doi: 10.1007/s40815-017-0395-x
    [14] 王宁, 梁晓龙, 张佳强, 等. 跨域无人集群协同反潜搜索方法研究[J/OL]. 系统仿真学报: 1-10[2024-04-01]. https://doi.org/10.16182/j.issn1004731x.joss.23-0073.
    [15] Bella S, Belbachir A, Belalem G. A centralized autonomous system of cooperation for UAVs-monitoring and USVs-cleaning[M]//Unmanned Aerial Vehicles. Hershey: IGI Global, 2019: 347-375.
    [16] Yu W, Kin H L, Chen L. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6782-6787. doi: 10.1109/TVT.2020.2991983
    [17] Yu W. Coordinated path planning for an unmanned aerial-aquatic vehicle(UAAV) and an autonomous underwater vehicle(AUV) in an underwater target strike mission[J]. Ocean Engineering, 2019, 182: 162-173. doi: 10.1016/j.oceaneng.2019.04.062
    [18] 杨海清, 芦斌. 基于改进蚁群算法的水下无人机路径规划研究[J]. 计算机测量与控制, 2020, 28(10): 216-220.

    Yang Haiqing, Lu Bin. Research on path planning of underwater UAV based on improved ant colony algorithm[J]. Computer Measurement & Control, 2020, 28(10): 216-220.
    [19] Shen C, Shi Y, Buckham B. Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(99): 1163-1173.
    [20] Kennedy J, Eberhart R. Particle swarm optimization[C]//1995 IEEE International Conference on Neural Networks Proceedings. Perth, Western Australia: IEEE, 1995.
    [21] Shi Y, Eberhart R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. Anchorage, AK, USA: IEEE, 1998.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  59
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-10
  • 修回日期:  2024-04-01
  • 网络出版日期:  2024-05-06

目录

    /

    返回文章
    返回
    服务号
    订阅号