Communication Technology of Far-Sea Cross-Domain Buoys Based on High Frequency Sky-Wave Propagation
-
摘要: 由于短波天波传播受限于工作频率, 且满足高增益和适应高海况的天线尺寸较大, 使用场景严重受限。面向深远海科学探测信息的跨域远距离传输需求, 文中提出一种融合短波通信、水声通信与无人浮标特性的远海跨域浮标通信技术, 介绍了远海跨域传输浮标装置构成与工作原理,并设计了具体工作流程。通过设计可变长柔性短波天线与水冷散热一体化功放组件, 确保了天线增益高、海况适应强及可跨空水介质传输等优点。通过仿真分析表明, 所提出的通信方法可有效保证通信效果, 解决高海况、复杂干扰环境下短波信号的跨域远距离可靠通信问题, 为远海跨域通信的发展提供一定的技术支撑。Abstract: High frequency(HF) sky-wave propagation is limited by the working frequency, and the antenna size meeting high gain and adapting to high sea conditions is large, so the application scenario is seriously limited. For the demand of cross-domain long-distance transmission of far-sea science detection information, a cross-domain buoy communication technology integrating HF communication, underwater acoustic communication and unmanned buoy characteristic was proposed. The composition and working principle of far-sea cross-domain transmission buoy devices were introduced, and the working flow was designed. Through the design of a flexible HF antenna with variable length and integrated power amplifier components for water cooling and heat dissipation, the advantages of high antenna gain, strong adaptation to sea conditions, and cross-medium transmission were ensured. The simulation analysis shows that the proposed communication method can effectively guarantee the communication effect and achieve reliable cross-domain long-distance communication of HF signals in high sea conditions and complex interference environments, providing certain technical support for the development of maritime long-distance cross-domain communication.
-
表 1 可通信情况列表
Table 1. List of available situations
频率数 可通信时间/h 信噪比/dB 信噪比余量/dB 频率1 17 20~30 9~19 频率2 12 20~30 9~19 频率3 3 20~30 9~19 表 2 可通信情况统计列表
Table 2. Statistical list of available situations
岸台站点 p1 p2 时间/h 频率数 时间/h 频率数 1# 22 2 — — 3# 21 2 22 2 4# 22 2 22 2 5# 21 2 22 2 6# — — 22 2 7# — — 22 2 8# — — 22 2 9# — — 22 2 -
[1] 杨会金, 王嘉鑫, 姚武军. 基于声学和无线电通讯的海洋中继浮标技术[J]. 舰船科学技术, 2011, 33(5): 78-81. doi: 10.3404/j.issn.1672-7649.2011.05.018YANG H J, WANG J X, YAO W J. Research on ocean relay buoy technology with underwater acoustic and wireless communication[J]. Ship Science and Technology, 2011, 33(5): 78-81. doi: 10.3404/j.issn.1672-7649.2011.05.018 [2] 周建清, 郭中源, 贾宁, 等. 无线/水声通信浮标技术研究及其实现[J]. 应用声学, 2012, 31(6): 445-455. doi: 10.11684/j.issn.1000-310X.2012.06.007ZHOU J Q, GUO Z Y, JIA N, et al. Studies and implementations of radio/acoustic communication buoy[J]. Applied Acoustics, 2012, 31(6): 445-455. doi: 10.11684/j.issn.1000-310X.2012.06.007 [3] ZHANG S W, YANG W C, XIN Y Z, et al. Prototype system design of mooring buoy for seafloor observation and construction of its communication link[J]. Journal of Coastal Research, 2018, 83: 41-49. [4] 李文彬, 张选明, 李家军, 等. 实时传输潜标平台中的水上通信浮标设计[J]. 海洋技术学报, 2014, 33(5): 47-51.LI W B, ZHANG X M, LI J J, et al. Design of the surface communication buoy of the real-time sub-surface mooring system[J]. Journal of Ocean Technology, 2014, 33(5): 47-51. [5] BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure[R]. US: NOAA, 2005. [6] 饶浩, 梁显锋, 张津舟, 等. 一种轻小型S波段卫星中继通信机的设计与实现[J]. 海洋技术学报, 2019, 38(4): 15-20.RAO H, LIANG X F, ZHANG J Z, et al. Design and implementation of a light and small S-band satellite relay transceiver[J]. Journal of Ocean Technology, 2019, 38(4): 15-20. [7] 王金龙. 短波数字通信研究与实践[M]. 北京: 科学出版社, 2013. [8] ERIC E J, ERIC K, WILLIAM N F, 等. 第三代短波无线电通信[M]. 北京: 国防工业出版社, 2021. [9] 李丽华, 关建新, 王永斌. 关于潜用消耗型短波通信浮标的探讨[J]. 舰船电子工程, 2006, 26(6): 120-122. doi: 10.3969/j.issn.1627-9730.2006.06.036LI L H, GUAN J X, WANG Y B. A discussion on some questions of short-wave expendable communications buoy[J]. Ship Electronic Engineering, 2006, 26(6): 120-122. doi: 10.3969/j.issn.1627-9730.2006.06.036 [10] 李丽华, 杨路刚, 谢慧. 基于ICECAP的消耗型短波通信浮标选频[J]. 海军工程大学学报, 2007, 19(4): 38-41. doi: 10.3969/j.issn.1009-3486.2007.04.010LI L H, YANG L G, XIE H. Frequency selection of short wave expendable communications buoy based on ICECAP[J]. Journal of Naval University of Engineering, 2007, 19(4): 38-41. doi: 10.3969/j.issn.1009-3486.2007.04.010 [11] 马璐, 温梦华, 乔钢, 等. 无人水下航行器声通信系统设计与应用[J]. 水下无人系统学报, 2018, 26(5): 449-455.MA L, WEN M H, QIAO G, et al. Design and application of acoustic communication system for unmanned undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 449-455. [12] 曲少春, 郑琨, 王英民. 圆柱形浮标运动分析与仿真[J]. 计算机仿真, 2010, 27(6): 363-367.QU S C, ZHENG K, WANG Y M. Analysis and simulation of spar buoy motion[J]. Computer Simulation, 2010, 27(6): 363-367. [13] 张松, 肖龙忠, 陈磊, 等. 一种用于海洋应急信号传输的浮标: ZL2023112996775[P]. 2023-12-29.