• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海上异构无人集群协同运用发展概况及启示

孙海文 王溪野 王兆辰 孟祥尧 陈婷 靳子荣

孙海文, 王溪野, 王兆辰, 等. 海上异构无人集群协同运用发展概况及启示[J]. 水下无人系统学报, 2024, 32(2): 275-281 doi: 10.11993/j.issn.2096-3920.2024-0032
引用本文: 孙海文, 王溪野, 王兆辰, 等. 海上异构无人集群协同运用发展概况及启示[J]. 水下无人系统学报, 2024, 32(2): 275-281 doi: 10.11993/j.issn.2096-3920.2024-0032
SUN Haiwen, WANG Xiye, WANG Zhaochen, MENG Xiangyao, CHEN Ting, JIN Zirong. Development Overview and Inspiration of Collaborative Application of Heterogeneous Unmanned Clusters at Sea[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 275-281. doi: 10.11993/j.issn.2096-3920.2024-0032
Citation: SUN Haiwen, WANG Xiye, WANG Zhaochen, MENG Xiangyao, CHEN Ting, JIN Zirong. Development Overview and Inspiration of Collaborative Application of Heterogeneous Unmanned Clusters at Sea[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 275-281. doi: 10.11993/j.issn.2096-3920.2024-0032

海上异构无人集群协同运用发展概况及启示

doi: 10.11993/j.issn.2096-3920.2024-0032
详细信息
    作者简介:

    孙海文(1990-), 男, 博士, 助理研究员, 主要研究方向为无人系统、人工智能

  • 中图分类号: TJ630

Development Overview and Inspiration of Collaborative Application of Heterogeneous Unmanned Clusters at Sea

  • 摘要: 无人系统集群凭借其协调度高、完全自主、群体智能等显著特点, 可直接影响并改变海上作战样式, 世界各海洋强国竞相开展跨域异构无人装备协同运用研究。文中重点分析了当前世界海上异构无人集群协同运用发展现状及典型作战运用案例, 分析了其具备的跨域多异构节点自组网通信、多域多源信息融合态势感知和多域大规模异构集群编队控制等特点, 最后提出,海上异构无人集群应融合有人无人感知信息、精细化智能决策、强化行动控制模拟训练、构建去中心化集群体系等启示建议。

     

  • 图  1  美军无人系统跨域协同发展历程

    Figure  1.  The development process of unmanned systems cross-domain collaboration in the US army

    图  2  USV与UUV之间声呐图像传输概念图

    Figure  2.  Conceptual diagram of sonar image transmission between USV and UUV

    图  3  美军无人系统跨域协同反潜

    Figure  3.  Cross-domain collaborative antisubmarine operations of unmanned systems in the U.S. army

    图  4  乌军隐蔽型半潜式USV

    Figure  4.  Concealed semi-submersible USV of the Ukrainian army

    图  5  乌军“旗手”UAV

    Figure  5.  "Flagbearer" UAV of the Ukrainian Army

    图  6  海上跨域协同运用

    Figure  6.  Cross domain collaborative application at sea

    表  1  国外跨域异构集群试验

    Table  1.   Cluster trial of foreign cross-domain heterogeneous

    国别年份验证内容平台类型及数量
    美国 2016 UAV由核潜艇投放, 作为核潜艇、UUV与有人水面舰间的通信中继 “黑翼”UAV核潜艇、UUV、有人水面舰各1架(艘)
    美国 2016 开展全新的跨域异构无人系统协同作战控制架构验证 1艘UUV、2艘“波浪滑翔者”USV、1架有人直升机
    英国 2016 开展自主控制、发展和认知统一, 实现单一系统对多个UAV、USV和UUV的指挥控制 25种无人系统(UAV、USV和UUV)
    美国 2017 UUV与USV的跨域协同通信 USV和UUV各1艘
    法国 2017 利用Drones任务系统实现了3种无人系统的协同探测、识别、拦截敌方小型舰艇 IT180小型旋翼UAV、REMORINA USV和UUV
    美国 2017 开发了自主控制、发展和认知系统, 实现了单一系统对多个UAV、USV和UUV的指挥控制 “普罗特斯”大型UUV、REMUS 100、IVER UUV各1艘, “激流”UUV、“波浪滑翔者”USV各2艘, 以及1架UAV
    美国 2018 验证未来可能应用的“人机交互”作战模式, 重点验证了多无人平台跨域协同执行反水雷任务 15种无人系统(UAV、USV和UUV)
    美国 2018 利用跨域无人系统进行反水雷作战 2艘UUV、1艘USV、1架UAV
    美国 2019 USV、UUV、有人水面舰和核潜艇实现跨域协同通信和信息传输 “金枪鱼-19”UUV, USV, 有人水面舰和核潜艇4类各1艘
    美国 2019 协同探测和识别水雷目标, 并用UUV清理 “梭鱼”UUV、USV各1艘
    美国 2022 指挥控制UAV、USV以及UUV, 完成海上预警探测、目标指示与引导攻击、跨域有人无人协同行动等行动任务 “海上猎手”USV、“海鹰” USV、MQ-8B UAV、MQ-9 UAV、3吨级UUV、“伯克”级驱逐舰
    美国 2023 评估无人系统在水面、水下和空中跨域异构网络通信、协同态势感知等作战能力 “海上猎手”USV、“海鹰” USV、MQ-9B UAV、RQ-20 UAV、3吨级UUV
    下载: 导出CSV

    表  2  跨域无人集群类型划分表

    Table  2.   Type classification of cross-domain unmanned cluster

    类型自主能力指挥模式协作关系通信方式
    无自主时空协同群间无通信
    半自主人在回路上编队协同地面站/卫星/群间通信
    全自主人在回路外任务协同去中心化链路通信
    下载: 导出CSV
  • [1] 王殿勋, 郭萃, 谢君, 等. 无人机集群对海上舰船的作战样式研究[J]. 兵器装备工程学报, 2022, 43(10): 1-9.

    Wang Dianxun, Guo Cui, Xie Jun, et al. Research on combat style of air UAV cluster against maritime ships[J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 1-9.
    [2] 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46(5): 847-857.

    Zhang Weidong, Liu Xiaocheng, Han Peng. Research progress and challenges of underwater unmanned system[J]. Acta Automatica Sinica, 2020, 46(5): 847-857.
    [3] 徐博, 王朝阳. 基于无人艇跨域异构编队协同导航研究进展与未来趋势[J]. 中国舰船研究, 2022, 17(4): 1-11, 56.

    Xu Bo, Wang Chaoyang. Research progress and future trend of cross-domain heterogeneous formation cooperative navigation based on unmanned boats[J]. China Ship Research, 2022, 17(4): 1-11, 56.
    [4] 陈燚. 水面无人艇基于优化的协同策略及实现的初步研究[D]. 镇江: 江苏科技大学, 2016.
    [5] 徐玉如, 苏玉民, 庞永杰. 海洋空间智能无人运载器技术发展展望[J]. 中国舰船研究, 2006, 1(3): 1-4.

    Xu Yuru, Su Yumin, Pang Yongjie. Development prospect of marine space intelligent unmanned vehicle technology[J]. China Ship Research, 2006, 1(3): 1-4.
    [6] 岳丽军, 王凡, 赵朝先. 海战场无人作战体系协同运用与指挥控制设想[J]. 指挥控制与仿真, 2022, 44(4): 1-7.

    Yue Lijun, Wang Fan, Zhao Chaoxian. Collaborative application and command and control of unmanned combat system in sea battlefield[J]. Command and control and simulation, 2022, 44(4): 1-7.
    [7] 金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1-8.

    Jin Kefan, Wang Hongdong, Yi Hong, et al. Key technologies and intelligent evolution prospect of unmanned marine equipment[J]. China Ship Research, 2018, 13(6): 1-8.
    [8] 韩光松, 侯博, 李萍. 无人自主系统在海战场的运用[J]. 飞航导弹, 2020(11): 84-89.

    Han Guangsong, Hou Bo, Li Ping. Application of unmanned autonomous system in sea battlefield[J]. Aeronautical Missile, 2020(11): 84-89.
    [9] Jiang Y, Peng Z H, Wang D, et al. Line-of-sight target enclosing of an underactuated autonomous surface vehicle with experiment results[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 832-841. doi: 10.1109/TII.2019.2923664
    [10] Liu L, Wang D, Peng Z H, et al. Cooperative path following ring-networked under-actuated autonomous surface vehicles: Algorithms and experimental results[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1519-1529. doi: 10.1109/TCYB.2018.2883335
    [11] Gu N, Peng Z H, Wang D, et al. Antidisturbance coordinated path following control of robotic autonomous surface vehicles: Theory and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2386-2396.
    [12] Dempsey M E. Joint operational access concept[R]. United States of America: Department of Defense, 2020: 1-76
    [13] 张维明, 黄松平, 黄金才, 等. 多域作战及其指挥控制问题探析[J]. 指挥信息系统与技术, 2020, 11(1): 1-6.

    Zhang Weiming, Huang Songping, Huang Jincai, et al. Multi-domain operations and their command and control[J]. Command Information System and Technology, 2020, 11(1): 1-6.
    [14] Liu Z X, Zhang Y M, Yu X, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews In Control, 2016, 41: 71-93. doi: 10.1016/j.arcontrol.2016.04.018
    [15] Breivik M, Hovstein V E, Fossen T I. Straight-line target tracking for unmanned surface vehicles[J]. Modeling, Identification and Control, 2008, 29(4): 131-149. doi: 10.4173/mic.2008.4.2
    [16] Dai S L, Wang C, Luo F. Identification and learning control of ocean surface ship using neural net-works[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 801-810. doi: 10.1109/TII.2012.2205584
    [17] Sonnenburg C R, Woolsey C A. Modeling, identification, and control of an unmanned surface vehicle[J]. Journal of Field Robotics, 2013, 30(3): 371-398. doi: 10.1002/rob.21452
    [18] Peng Z H, Wang J, Wang D. Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1083-1090. doi: 10.1109/TCST.2017.2699167
    [19] Peng Z H, Jiang Y, Wang J. Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing[J]. IEEE Trans-actions on Industrial Electronics, 2020, 68(4): 3402-3412.
    [20] Eliker K, Zhang G Q, Grouni S, et al. An optimization problem for quadcopter reference flight trajectory generation[J]. Journal of Advanced Transportation, 2018, 4: 6574183.1-6574183.15.
    [21] Cheng Z X, Li D S, Gao Y. UAV three-dimensional path planning based on the grasshopper algorithm[J]. Flight Dynamics, 2019, 37(2): 46-50, 55.
    [22] Wang S Y, Long T, Wang Z, et al. Dynamic path planning using anytime repairing sparse A* algorithm[J]. Systems Engineering and Electronics, 2018, 40(12): 2714-2721.
    [23] Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270-299. doi: 10.1016/j.comcom.2019.10.014
    [24] Liu Y Y, Rajappa S, Montenbruck J M, et al. Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances[J]. Robotics and Autonomous Systems, 2017, 98: 317-332. doi: 10.1016/j.robot.2017.08.011
    [25] Sasongko R A, Rawikara S S, Tampubolon H J. UAV obstacle avoidance algorithm based on ellipsoid geometry[J]. Journal of Intelligent & Robotic Systems, 2017, 88(2-4): 567-581.
    [26] Krämer M S, Kuhnert K D. Multi-Sensor fusion for UAV collision avoidance[C]//Proceedings of the 2018 International Conference on Mechatronics Systems and Control Engineering. Amsterdam, Netherlands: ACM, 2018. 5-12.
    [27] Jakeman M. Task force report on next-generation unmanned undersea systems[R]. United States of America: DOD Defense Science Board, 2016: 1-97.
    [28] 王石, 张建强, 杨舒卉, 等. 国内外无人艇发展现状及典型作战应用研究[J]. 火力与指挥控制, 2019, 44(2): 11-15.

    Wang Shi, Zhang Jianqiang, Yang Shuhui, et al. Research on the development status and typical operational application of unmanned boats at home and abroad[J]. Firepower and Command and Control, 2019, 44(2): 11-15.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  50
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-03-18
  • 录用日期:  2024-03-27
  • 网络出版日期:  2024-04-09

目录

    /

    返回文章
    返回
    服务号
    订阅号