Influence of Different Water Depths on Gas Jet of Underwater Scarfed Nozzle
-
摘要: 通过斜切式喷管喷气进行推力矢量控制, 可以实现对航行器的姿态控制和轨迹调整, 提高其机动性能和稳定性。为探究斜切喷管在水下的工作状态, 基于雷诺时均Navier-Stokes方法和流体体积函数模型, 对不同水深条件下的斜切式喷管燃气射流的流场特性及推力特性开展仿真研究, 分析了燃气射流与水介质的相互作用过程以及喷管推力特性的变化。研究表明: 燃气泡经过4个阶段的发展之后, 形成顶部的气囊及喷口近场的锥形气体通道, 气囊边缘在剪切涡作用下脱离形成气团; 喷口波系的形态和位置随水深而变化, 射流边界受限于燃气泡边界, 二者相互作用, 导致射流后续演化的不稳定; 射流对平板壁面的影响呈非对称性, 长边侧受影响域大于短边侧; 同一时刻, 水深越大, 喷管推力数值越小, 推力方向波动越剧烈。研究结论可为推进水下推力矢量喷管的应用提供参考。Abstract: Thrust vector control by scarfed nozzle jet can realize attitude control and trajectory adjustment of the undersea vehicle and improve the maneuvering performance and stability of the undersea vehicle. In order to investigate the working state of the underwater scarfed nozzle, the Reynolds time-averaged Navier-Stokes(RANS) method and the volume of fluid(VOF) model were used, and simulation of the flow field characteristics and thrust characteristics of the gas jet of the scarfed nozzle under different water depth conditions was carried out. The interaction between the gas jet and the water, as well as the change in the thrust characteristics of the nozzle were analyzed. The results show that the gas bubble forms a gas pocket at the top and a conical gas channel in the near field of the nozzle after four stages of development. The edges of the gas pocket detach under the action of the shear vortex to form a gas cluster. The shape and position of the nozzle wave system vary with the water depth, and the jet boundary is limited by the gas bubble boundary. They interact with each other, leading to the unstable evolution of the jet. The influence of the jet on the wall of the flat plate is asymmetric, with the long side being more affected than the short side. At the same moment, greater water depth indicates a smaller value of the nozzle thrust and more violent fluctuation along the thrust direction. The conclusions can provide a reference for the application of underwater thrust vector nozzles.
-
Key words:
- scarfed nozzle /
- gas jet /
- flow field characteristics /
- thrust characteristics
-
表 1 不同水深条件下喷管落压比
Table 1. Nozzle pressure ratios in different water depths
H/m NPR 5 40.6667 25 17.4286 50 10.1667 75 7.1765 100 5.5454 表 2 推力角度波动值
Table 2. Fluctuations in thrust angle
H/m 波动范围/(°) 稳定值(0.05 s) /(°) 角度差值/(°) 5 29.03~44.60 43.22 1.78 25 30.10~43.42 43.19 1.81 50 29.47~43.17 43.05 1.95 75 29.79~43.01 42.79 2.21 100 24.70~42.54 42.49 2.51 -
[1] 黄楠, 陈志华, 王争论. 水下超声速气体射流线性稳定性研究[J]. 推进技术, 2021, 42(3): 550-559. [2] 张焕好, 郭则庆, 王瑞琦, 等. 水下超声速气体射流的初始流动特性研究[J]. 振动与冲击, 2019, 38(6): 88-93, 131. [3] 王利利, 刘影, 李达钦, 等. 固体火箭发动机水下超音速射流数值研究[J]. 兵工学报, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006Wang Lili, Liu Ying, Li Daqin, et al. Numerical study of underwater supersonic gas jets for solid rocket engine[J]. Acta Armamentarii, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006 [4] 施红辉, 郭强, 王超, 等. 水下超音速气体射流胀鼓和回击的关联性研究[J]. 力学学报, 2010, 42(6): 1206-1210.Shi Honghui, Guo Qiang, Wang Chao, et al. Experiments on the relationship between bulging and back-attack of submerged supersonic gas jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1206-1210. [5] 施红辉, 汪剑锋, 陈帅, 等. 水下超声速气体射流初期流场特性的实验研究[J]. 中国科学技术大学学报, 2014, 44(3): 233-237. doi: 10.3969/j.issn.0253-2778.2014.03.012Shi Honghui, Wang Jianfeng, Chen Shuai, et al. Experimental study on flow characteristics at the initial injection stage of underwater supersonic gas jets[J]. Journal of University of Science and Technology of China, 2014, 44(3): 233-237. doi: 10.3969/j.issn.0253-2778.2014.03.012 [6] 施红辉, 王柏懿, 戴振卿. 水下超声速气体射流的力学机制研究[J]. 中国科学: 物理学 力学 天文学, 2010, 40(1): 92-100.Shi Honghui, Wang Boyi, Dai Zhenqing. Research on the mechanics of underwater supersonic gas jets[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(1): 92-100. [7] 王柏懿, 戴振卿, 戚隆溪, 等. 水下超声速气体射流回击现象的实验研究[J]. 力学学报, 2007, 23(2): 267-272. doi: 10.3321/j.issn:0459-1879.2007.02.017Wang Boyi, Dai Zhenqing, Qi Longxi, et al. Experimental study on back-attack phenomenon in underwater supersonic gas jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 267-272. doi: 10.3321/j.issn:0459-1879.2007.02.017 [8] 张春, 郁伟, 王宝寿. 水下超声速过膨胀燃气射流的流场特性[J]. 航空动力学报, 2022, 37(8): 1633-1642. [9] 唐云龙, 李世鹏. 高速欠膨胀射流结构及推力特征研究[J]. 船舶力学, 2017, 21(10): 1218-1226. doi: 10.3969/j.issn.1007-7294.2017.10.005Tang Yunlong, Li Shipeng. Researches on the characteristics of structure and thrust of jets underwater with under-expansion[J]. Journal of Ship Mechanics, 2017, 21(10): 1218-1226. doi: 10.3969/j.issn.1007-7294.2017.10.005 [10] 柳文杰, 李冬, 蔡强, 等. 水下点火过程及其影响因素仿真[J]. 火箭推进, 2022, 48(5): 76-83. doi: 10.3969/j.issn.1672-9374.2022.05.010 [11] 唐云龙, 李世鹏, 谢侃, 等. 有相变的水下超音速燃气射流数值模拟[J]. 哈尔滨工程大学学报, 2016, 37(9): 1237-1243. doi: 10.11990/jheu.201506010 [12] 侯子伟, 黄孝龙, 李宁, 等. 水下高速燃气射流及复杂波系二维数值仿真[J]. 水下无人系统学报, 2020, 28(1): 67-74.Hou Ziwei, Huang Xiaolong, Li Ning, et al. Two-dimensional numerical simulation of underwater high-speed gas jet and complex wave system[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 67-74. [13] Dong P, Fu B, Cheng D. Analysis on the supersonic gas jet submerged in liquid cross flow[J]. Ocean Engineering, 2022, 258: 111822. doi: 10.1016/j.oceaneng.2022.111822 [14] Gong Z X, Lu C J, Li J, et al. The gas jet behaviour in submerged Laval nozzle flow[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(6): 1035-1043. doi: 10.1016/S1001-6058(16)60817-X [15] Li Y, Jiang Y, Shen L, et al. Experimental investigation on submerged water jet wrapped in an annular gas jet[J]. Physics of Fluids, 2023, 35(1): 012121. doi: 10.1063/5.0135351 [16] Xiang M, Zhao X, Zhou H. Transient dynamic analysis for the submerged gas jet in flowing water[J]. European Journal of Mechanics-B/Fluids, 2021, 85: 351-360. doi: 10.1016/j.euromechflu.2020.09.009 [17] 许海雨, 罗凯, 黄闯, 等. 通气超空化对水下火箭发动机性能影响[J]. 哈尔滨工业大学学报, 2021, 53(6): 41-47. doi: 10.11918/201911018 [18] 许海雨, 罗凯, 刘富强, 等. 水下超声速射流对上浮水雷受力特性影响研究[J]. 推进技术, 2020, 41(11): 2623-2629. [19] 唐云龙, 李世鹏, 刘筑, 等. 水下固体火箭发动机推力脉动特征研究[J]. 固体火箭技术, 2016, 39(4): 476-481. doi: 10.7673/j.issn.1006-2793.2016.04.005 [20] 张小圆, 李世鹏, 杨保雨, 等. 水下固体火箭发动机垂直气体射流结构和推力影响研究[J]. 推进技术, 2021, 42(5): 961-969. [21] 张春, 郁伟, 王宝寿. 水下超声速燃气射流的初期流场特性研究[J]. 兵工学报, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016Zhang Chun, Yu Wei, Wang Baoshou. Research on the initial flow field characteristics of underwater supersonic gas jets[J]. Acta Armamentarii, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016