[1] |
Truscott T T, Epps B P, Belden J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378. doi: 10.1146/annurev-fluid-011212-140753
|
[2] |
Chaudhry A Z, Shi Y, Pan G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects[J]. Applied ocean research, 2021, 115: 102849. doi: 10.1016/j.apor.2021.102849
|
[3] |
Liu W, Zhang A, Miao X, et al. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method[J]. Journal of Fluid Mechanics, 2023, 958: 43.
|
[4] |
Yao X, Yang Z, Ma G, et al. Research on the characteristics and similarity relationships of impact load reduction of a vehicle entering water[J]. Applied Ocean Research, 2024, 142: 103814. doi: 10.1016/j.apor.2023.103814
|
[5] |
明付仁, 王嘉捷, 刘文韬, 等. 高速跨介质入水多相流动与流固耦合特性研究综述[J]. 空气动力学学报, 2024, 42(1): 67-85.Ming Furen, Wang Jiajie, Liu Wentao, et al. Review of multiphase flow and fluid-structure interaction of high-speed water entry[J]. Acta Aerodynamica Sinica, 2024, 42(1): 67-85.
|
[6] |
Wang Z, Feng P, Liu G, et al. Load and motion behaviors of ogive-nosed projectile during high-speed water entry with angle of attack[J]. Ocean Engineering, 2022, 266: 112937. doi: 10.1016/j.oceaneng.2022.112937
|
[7] |
Liu X, Luo K, Yuan X, et al. Numerical study on the impact load characteristics of a trans-media vehicle during high-speed water entry and flat turning[J]. Ocean Engineering, 2023, 273: 113986. doi: 10.1016/j.oceaneng.2023.113986
|
[8] |
迟铁. 流固耦合分析下的船体高速入水冲击数值模拟[J]. 舰船科学技术, 2023, 45(19): 60-63.Chi Tie. Numerical simulation of high-speed water entry impact of ship hull under fluid structure coupling analysis[J]. Ship Science and Technology, 2023, 45(19): 60-63.
|
[9] |
范旭东, 漆超, 王旭, 等. 基于ALE方法的高速弹体入水冲击特性研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(2): 7-14.Fan Xudong, Qi Chao, Wang Xu, et al. Research on water impact characteristics of high-speed projectiles based on ALE method[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2022, 36(2): 7-14.
|
[10] |
杨庆, 谭智铎, 俞建成, 等. 空投水下滑翔机入水冲击载荷研究[J]. 舰船科学技术, 2023, 45(4): 67-73. doi: 10.3404/j.issn.1672-7649.2023.04.014Yang Qing, Tan Zhiduo, Yu Jiancheng, et al. Research on impact load of underwater glider entering water by airdrop[J]. Ship Science and Technology, 2023, 45(4): 67-73. doi: 10.3404/j.issn.1672-7649.2023.04.014
|
[11] |
刘华坪, 余飞鹏, 张岳青, 等. 不同头型鱼雷入水冲击载荷研究[J]. 水下无人系统学报, 2018, 26(6): 527-532.Liu Huaping, Yu Feipeng, Zhang Yueqing, et al. Analyzing water-entry impact load on torpedo with different head types[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 527-532.
|
[12] |
刘正平. 空投鱼雷雷伞系统纵向运动稳定性分析[J]. 舰船科学技术, 1993(3): 22-26.Liu Zhengping. Stability analysis of longitudinal motion of air-dropped torpedo parachute system[J]. Ship Science and Technology, 1993(3): 22-26.
|
[13] |
刘正平, 王崇伟. 空投鱼雷雷伞系统五自由度运动的研究[J]. 舰船科学技术, 1996(5): 38-42.Liu Zhengping, Wang Chongwei. Research on five-degree-of-freedom motion of air-dropped torpedo parachute system[J]. Ship Science and Technology, 1996(5): 38-42.
|
[14] |
李兵. 鱼雷用降落伞设计技术[J]. 鱼雷技术, 2004, 12(3): 37-40.Li Bing. Preliminary discussion of torpedo parachute[J]. Torpedo Technology, 2004, 12(3): 37-40.
|
[15] |
潘星, 胡利, 曹义华. 降落伞主充气阶段的动态仿真及流场分析[J]. 航空动力学报, 2008(1): 87-93.Pan Xing, Hu Li, Cao Yihua. Analysis of dynamic simulation and fluid field of parachute in inflation stage[J]. Journal of Aerospace Power, 2008(1): 87-93.
|
[16] |
李伟, 徐文焱, 邓鹏. 反潜导弹空中末弹道及入水控制问题研究[J]. 舰船科学技术, 2012, 34(12): 82-87. doi: 10.3404/j.issn.1672-7649.2012.12.017Li Wei, Xu Wenyan, Deng Peng. Research on terminal trajectory and water-entry control of antisubmarine missile[J]. Ship Science and Technology, 2012, 34(12): 82-87. doi: 10.3404/j.issn.1672-7649.2012.12.017
|
[17] |
郭聚, 韩建立, 李新成, 等. 基于六自由度的空投鱼雷雷伞系统建模仿真研究[J]. 舰船电子工程, 2022, 42(3): 124-128. doi: 10.3969/j.issn.1672-9730.2022.03.028Guo Ju, Han Jianli, Li Xincheng, et al. Reseach of modeling and simulation of airdrop torpedo parachute system based on six free degrees[J]. Ship Electronic Engineering, 2022, 42(3): 124-128. doi: 10.3969/j.issn.1672-9730.2022.03.028
|
[18] |
隋蓉, 张文博. 降落伞临界开伞速度研究[J]. 航天返回与遥感, 2023, 44(3): 1-8.Sui Rong, Zhang Wenbo. The research on the critical velocity of parachute opening[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 1-8.
|
[19] |
邹志辉. 喷气入水通气空泡流动特性实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
[20] |
Chuang S. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1): 10-17. doi: 10.5957/jsr.1966.10.1.10
|
[21] |
Chuang S. Experiments on slamming of wedge-shaped bodies[J]. Journal of Ship Research, 1967, 11(3): 190-198. doi: 10.5957/jsr.1967.11.3.190
|
[22] |
Huera-Huarte F J, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering, 2011, 38(11-12): 1347-1355. doi: 10.1016/j.oceaneng.2011.06.004
|
[23] |
Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology, 2000, 5(1): 31-39. doi: 10.1007/s007730070019
|
[24] |
Ermanyuk E V, Ohkusu M. Impact of a disk on shallow water[J]. Journal of Fluids and Structures, 2005, 20(3): 345-357. doi: 10.1016/j.jfluidstructs.2004.10.002
|
[25] |
潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.Pan Long, Wang Huanran, Yao Erren, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
|
[26] |
邹志辉, 李佳, 杨茂, 等. 喷气协助航行体入水空泡流动特性实验研究[J]. 弹道学报, 2022, 34(1): 1-8.Zou Zhihui, Li Jia, Yang Mao, et al. Experimental investigation on cavity flow characteristics of water entry of vehicle with gas jet cavitator[J]. Journal of Ballistics, 2022, 34(1): 1-8.
|
[27] |
刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.Liu Huaping, Yu Feipeng, Han Bing, et al. Numerical simulation study on influence of top jet in object water entering impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
|
[28] |
蒋运华, 刘洪松, 邹志辉, 等. 向前气射流协助航行体入水空泡特性分析[C]//第十一届全国流体力学学术会议论文集. 深圳: 中国力学学会流体力学专委会, 2020.
|
[29] |
赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810Zhao Hairui, Shi Yao, Pan Guang, et al. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810
|
[30] |
陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387Chen Yang, Wu Liang, Zeng Guowei, et al. Numerical analysis of the water entry process of a projectile with a circular airbag[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
|
[31] |
吴远飞. 带应急漂浮气囊的缩比直升机结构着水耦合响应分析[J]. 中国科技信息, 2018, 11(1): 59-61. doi: 10.3969/j.issn.1001-8972.2018.01.022Wu Yuanfei. Analysis of the coupled response of a scaled-down helicopter structure with emergency floating airbag to water[J]. China Science and Technology Information, 2018, 11(1): 59-61 doi: 10.3969/j.issn.1001-8972.2018.01.022
|
[32] |
包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真[J]. 兵工学报, 2024, 45(1): 206-218.Bao Jian, Ma Guihui, Sun Longquan, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags[J]. Acta Armamentarii, 2024, 45(1): 206-218.
|
[33] |
职明洋, 燕国军, 孙龙泉, 等. 带气囊结构航行体入水回收动力学特性研究[J]. 力学学报, 2024, 56(4): 943-959. doi: 10.6052/0459-1879-23-451Zhi Mingyang, Yan Guojun, Sun Longquan, et al. Investigation of dynamic characteristics about vehicle with airbags structure during water-entry and recovery[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 943-959. doi: 10.6052/0459-1879-23-451
|
[34] |
陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究[J]. 船舶力学, 2022, 26(3): 315-322. doi: 10.3969/j.issn.1007-7294.2022.03.001Chen Kaiyan, Chen Hui, Wei Haipeng, et al. Simulation and experimental study on a cylinder with airbags falling into water[J]. Journal of Ship Mechanics, 2022, 26(3): 315-322. doi: 10.3969/j.issn.1007-7294.2022.03.001
|
[35] |
徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165,170.Xu Xindong, Li Jianchen, Cao Xiaojuan. Water-entry impact performance of torpedo’s cushion nose cap[J]. Torpedo Technology, 2012, 20(3): 161-165, 170.
|
[36] |
Howard E A. Protective nose cap for torpedoes: US670837[P]. 1959-06-09.
|
[37] |
Hinckley W M, Yang J C S.Analysis of rigid polyurethane foam as a shock mitigator[J]. Experimental Mechanics, 1975, 15(5): 177-183. doi: 10.1007/BF02319143
|
[38] |
Shutler R A, Manning M R, Leitch P A, et al. Method of producing missile nose cones: US2010/0326182[P]. 2009-06-25.
|
[39] |
严忠汉. 入水弹头缓冲器特性探讨[J]. 水动力学研究与进展, 1987(1): 112-121.Yan Zhonghan. An approach to the behavior of water-entry missile's mitigator[J]. Journal of Hydrodynamics, 1987(1): 112-121.
|
[40] |
宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究[J]. 鱼雷技术, 1999, 7(2): 41-46.Xuan Jianming, Song Zhiping, Yan Zhonghan. Experimental study on the disintegration of torpedo entry buffer protection head cap[J]. Torpedo Technology, 1999, 7(2): 41-46.
|
[41] |
魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 115-126. doi: 10.11883/bzycj-2020-0461Wei Haipeng, Shi Chongbin, Sun Tiezhi, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion and Shock Waves, 2021, 41(10): 115-126. doi: 10.11883/bzycj-2020-0461
|
[42] |
孙龙泉, 王都亮, 李志鹏, 等. 基于CEL方法的航行体高速入水泡沫铝缓冲装置降载性能分析[J]. 振动与冲击, 2021, 40(20): 80-88.Sun Longquan, Wang Duliang, Li Zhipeng, et al. Analysis on load reduction performance of foamed aluminum buffer device for high speed water entry of vehicle based on a CEL method[J]. Journal of Vibration and Shock, 2021, 40(20): 80-88.
|
[43] |
施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620Shi Yao, Liu Zhenpeng, Pan Guang, et al. Structural design and load reduction performance analysis of gradient density head cap of vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620
|
[44] |
权晓波, 包健, 孙龙泉, 等. 基于耦合欧拉-拉格朗日算法的航行体缓冲头帽冲击性能[J]. 兵工学报, 2022, 43(4): 851-860. doi: 10.12382/bgxb.2021.0168Quan Xiaobo, Bao Jian, Sun Longquan, et al. Impact performance of cushion nose cap of underwater vehicle based on cel method[J]. Acta Armamentarii, 2022, 43(4): 851-860. doi: 10.12382/bgxb.2021.0168
|
[45] |
Li Y, Sun T, Zong Z, et al. Dynamic crushing of a dedicated buffer during the high-speed vertical water entry process[J]. Ocean Engineering, 2021, 236(15): 109526.
|
[46] |
Li Y, Zong Z, Sun T. Classification of the collapse of a composite fairing during the oblique high-speed water entry[J]. Thin-Walled Structures, 2023, 182: 110260. doi: 10.1016/j.tws.2022.110260
|
[47] |
Li Y, Zong Z, Sun T. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity[J]. Composite Structures, 2021, 255(1): 112883.
|
[48] |
黄晓艳, 刘波. 舰船用结构材料的现状与发展[J]. 船舶, 2004(3): 21-24. doi: 10.3969/j.issn.1001-9855.2004.03.005Huang Xiaoyan, Liu Bo. Current situation and development of warship structure material[J]. Ship & Boat, 2004(3): 21-24. doi: 10.3969/j.issn.1001-9855.2004.03.005
|
[49] |
张梦, 孙曙日, 冯殿震. 新材料在鱼雷设计中的应用与发展[J]. 鱼雷技术, 2015, 23(2): 86-89,118.Zhang Meng, Sun Shuri, Feng Dianzhen, et al. Application and development of new materials in torpedo designs[J]. Torpedo Technology, 2015, 23(2): 86-89,118.
|
[50] |
黄德民. 新材料在现代鱼雷技术中的应用与发展[J]. 鱼雷技术, 2004, 12(2): 1-3.Huang Demin. Application and development of new material in modern torpedo technology[J]. Torpedo Technology, 2004, 12(2): 1-3.
|
[51] |
李德良, 王宝柱, 刘东晖, 等. 阻尼材料的发展及其在舰船上的应用[J]. 现代涂料与涂装, 2009, 12(2): 25-27. doi: 10.3969/j.issn.1007-9548.2009.02.008Li Deliang, Wang Baozhu, Liu Donghui, et al. Development of damping material and its application on ship[J]. Modern Paint & Finishing, 2009, 12(2): 25-27. doi: 10.3969/j.issn.1007-9548.2009.02.008
|
[52] |
刘思华, 李利剑, 朱晋, 等. 表面润湿性对球体斜射入水过程的影响研究[J]. 力学学报, 2024, 56(4): 960-971. doi: 10.6052/0459-1879-23-461Liu Sihua, Li Lijian, Zhu Jing, et al. Influence of surface wettability on the process of oblique water entry of sphere[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 960-971. doi: 10.6052/0459-1879-23-461
|
[53] |
Truscott T T, Techet A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12): 180.
|
[54] |
Do-Quang M, Amberg G. The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting[J]. Physics of Fluids, 2009, 21(2): 180.
|
[55] |
王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082Wang Cong, Xu Haiyu, Lu Jiaxing, et al. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
|
[56] |
刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
|
[57] |
Passandideh-Fard M, Roohi E. Transient simulations of cavitating flows using a modified volume-of-fluid(VOF) technique[J]. International Journal of Computational Fluid Dynamics, 2008, 22(1-2): 97-114. doi: 10.1080/10618560701733657
|
[58] |
鲍雪, 杨永生. 水下航行体的超空泡形态及减阻特性仿真分析[J]. 装备制造技术, 2015(4): 243-244. doi: 10.3969/j.issn.1672-545X.2015.04.088Bao Xue, Yang Yongsheng. Simulation on supercavitation characteristics of underwater vehicle[J]. Equipment Manufacturing Technology, 2015(4): 243-244. doi: 10.3969/j.issn.1672-545X.2015.04.088
|
[59] |
邹多艺佳, 朱墨, 蔡希文, 等. 空化器锥角对超空泡射弹阻力与弹道影响数值研究[J]. 兵器装备工程学报, 2023, 44(12): 54-62. doi: 10.11809/bqzbgcxb2023.12.008Zou Duoyijia, Zhu Mo, Cai Xiwen, et al. Numerical study on the influence of cavitator cone angle on the drag and ballistic of supercavitating projectile[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 54-62. doi: 10.11809/bqzbgcxb2023.12.008
|
[60] |
张亮, 胡常莉, 吴小安. 超空泡航行体锥段结构对其尾拍运动影响的数值研究[J]. 兵工学报, 2024, 45(3): 828-836.Zhang Liang, Hu Changli, Wu Xiaoan, et al. Numerical study on the influence of cone geometry of supercavitating vehicle on its tail-slap motion[J]. Acta Armamentarii, 2024, 45(3): 828-836.
|
[61] |
Bodily K G, Carlson S J, Truscott T T. The water entry of slender axisymmetric bodies[J]. Physics of Fluids, 2014, 26(7): 1-37.
|
[62] |
Shafaghat R, Hosseinalipour S M, Lashgari I, et al. Shape optimization of axisymmetric cavitators in supercavitating flows, using the NSGA II algorithm[J]. Applied Ocean Research, 2011, 33(3): 193-198. doi: 10.1016/j.apor.2011.03.001
|
[63] |
魏平, 王首发, 严文荣, 等. 超空泡射弹头锥外形对阻力及空化特性的影响[J]. 海军工程大学学报, 2022, 34(6): 84-89, 95. doi: 10.7495/j.issn.1009-3486.2022.06.015Wei Ping, Wang Shoufa, Yan Wenrong, et al. Influence of supercavitating projectiles nose on resistance and cavitation characteristics[J]. Journal of Naval University of Engineering, 2022, 34(6): 84-89, 95. doi: 10.7495/j.issn.1009-3486.2022.06.015
|
[64] |
宋盼盼, 赵捍东, 吴建萍. 不同头型鱼雷垂直入水仿真研究[J]. 机电技术, 2013, 36(6): 64-65. doi: 10.3969/j.issn.1672-4801.2013.06.022Song Panpan, Zhao Handong, Wu Jianping. Simulation study on vertical entry of torpedoes with different head types[J]. Mechanical and Electrical Technology, 2013, 36(6): 64-65. doi: 10.3969/j.issn.1672-4801.2013.06.022
|
[65] |
马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟[J]. 哈尔滨工业大学学报, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004Ma Qingpeng, Wei Yingjie, Wang Cong, et al. Numerical simulation of high-speed water entry cavity of cylinders[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004
|
[66] |
方城林, 魏英杰, 王聪, 等. 不同头型高速射弹垂直入水数值模拟[J]. 哈尔滨工业大学学报, 2016, 48(10): 77-82. doi: 10.11918/j.issn.0367-6234.2016.10.011Fang Chenglin, Wei Yingjie, Wang Cong, et al. Numerical simulation of vertical high-speed water entry process of projectiles with different heads[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 77-82. doi: 10.11918/j.issn.0367-6234.2016.10.011
|
[67] |
石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 32(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027Shi Hancheng, Jiang Pei, Cheng Jinfang. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine's head shape[J]. Ship Science and Technology, 2010, 32(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
|
[68] |
孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究[J]. 海军工程大学学报, 2019, 31(6): 101-106. doi: 10.7495/j.issn.1009-3486.2019.06.019Sun Yusong, Zhou Suihua, Zhang Xiaobing, et al. On water-impact load of heavy projectiles base on multi-material ALE method[J]. Journal of Naval University of Engineering, 2019, 31(6): 101-106. doi: 10.7495/j.issn.1009-3486.2019.06.019
|
[69] |
Chang B, Croson M, Straker L, et al. How seabirds plunge-dive without injuries[J]. Proceeding of National Academy of Sciences of the United States of America, 2016, 113(43): 12006-12011. doi: 10.1073/pnas.1608628113
|
[70] |
Sharker S I, Holekamp S, Mansoor M M, et al. Water entry impact dynamics of diving birds[J]. Bioinspir Biomim, 2019, 14(5): 56013. doi: 10.1088/1748-3190/ab38cc
|
[71] |
吴正阳, 张成春, 贺永圣, 等. 跨介质航行器流体动力外形仿生设计[J]. 宇航总体技术, 2020, 4(2): 62-68.Wu Zhengyang, Zhang Chengchun, He Yongsheng, et al. Biomimetic design of fluid dynamic shape for cross-media vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(2): 62-68.
|
[72] |
朱美慧. 航行体入水缓冲仿生设计及降载性能研究[D]. 吉林: 吉林大学, 2023.
|
[73] |
鲍杨春. 跨介质航行器流体动力外形组合仿生设计与气动特性分析[D]. 吉林: 吉林大学, 2019.
|
[74] |
罗剑桥, 刘晓东, 马文朝, 等. 组合仿生跨介质飞行器设计及流固耦合性能研究[J]. 无人系统技术, 2022, 5(3): 28-39.Luo Jianqiao, Liu Xiaodong, Ma Wenchao, et al. Design of combined bionic trans-media vehicle and research on fluid-solid coupling performance[J]. Unmanned Systems Technology, 2022, 5(3): 28-39.
|
[75] |
吕达, 苏浩秦, 李筠, 等. 变形仿生飞翼跨介质无人机外形设计与航行仿真[J]. 兵器装备工程学报, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009Lv Da, Su Haoqin, Li Yun, et al. Configuration design and navigation simulation of deformable bionic flying-wing aerial-aquatic unmanned vehicles[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 59-66. doi: 10.11809/bqzbgcxb2022.12.009
|
[76] |
Wu Z, Zhang C, Wang J, et al. Water entry of slender segmented projectile connected by spring[J]. Ocean Engineering, 2020, 217(1): 108016.
|
[77] |
Fu Z, Sun L, Zhi M, et al. Numerical study on the dynamic characteristics of a vehicle with a multistage load reduction structure during oblique water entry[J]. Ocean Engineering, 2024, 295: 116778. doi: 10.1016/j.oceaneng.2024.116778
|
[78] |
Sui Y, Ming F, Wang S, et al. Experimental investigation on the impact force of the oblique water entry of a slender projectile with spring buffer[J]. Applied Ocean Research, 2023, 138: 103631. doi: 10.1016/j.apor.2023.103631
|
[79] |
刘晗聪. 回转体高速入水缓冲降载研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
[80] |
王禹开. 高速弹体入水缓冲降载研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|
[81] |
肖睿, 魏继锋, 吉耿杰, 等. 前抛体对弹体入水载荷影响数值模拟研究[J]. 爆炸与冲击, 2023, 43(4): 67-80. doi: 10.11883/bzycj-2022-0431Xiao Rui, Wei Jifeng, Ji Gengjie, et al. Numerical research on the effect of front body on water-entry load of a projectile[J]. Explosion and Shock Waves, 2023, 43(4): 67-80. doi: 10.11883/bzycj-2022-0431
|
[82] |
Rabbi R, Speirs N B, Kiyama A, et al. Impact force reduction by consecutive water entry of spheres[J]. Journal of Fluid Mechanics, 2021, 915.
|
[83] |
Lyu X, Yun H, Wei Z. Influence of time interval on the water entry of two spheres in tandem configuration[J]. Experiments in Fluids, 2021, 62(11): 1-9.
|
[84] |
Lyu X, Wang X, Yun H, et al. On water-entry modes of the latter sphere in tandem configuration with two spheres[J]. Journal of Fluids and Structures, 2022, 112: 103601. doi: 10.1016/j.jfluidstructs.2022.103601
|
[85] |
Zhi M, Li Z, Sun L, et al. Investigation and optimization of load characteristics of a multi-stage load-reduction structure for vehicles during high-speed vertical water entry[J]. Ocean Engineering, 2023, 289: 116183. doi: 10.1016/j.oceaneng.2023.116183
|