• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同头型回转体高速入水运动过程对比研究

王余 熊永亮 田轩麾 周福昌 刘翱 孙国仓

王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 451-462 doi: 10.11993/j.issn.2096-3920.2024-0028
引用本文: 王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 451-462 doi: 10.11993/j.issn.2096-3920.2024-0028
WANG Yu, XIONG Yongliang, TIAN Xuanhui, ZHOU Fuchang, LIU Ao, SUN Guocang. Comparison of High-Speed Water Entry Movement Process of Axisymmetric Bodies with Different Head Shapes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 451-462. doi: 10.11993/j.issn.2096-3920.2024-0028
Citation: WANG Yu, XIONG Yongliang, TIAN Xuanhui, ZHOU Fuchang, LIU Ao, SUN Guocang. Comparison of High-Speed Water Entry Movement Process of Axisymmetric Bodies with Different Head Shapes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 451-462. doi: 10.11993/j.issn.2096-3920.2024-0028

不同头型回转体高速入水运动过程对比研究

doi: 10.11993/j.issn.2096-3920.2024-0028
基金项目: 国家自然科学基金项目资助(11872187).
详细信息
    通讯作者:

    熊永亮(1981-), 男, 教授, 博士生导师, 主要研究方向为水下航行器减阻降噪与跨介质飞行器降载技术.

  • 中图分类号: TJ630; U674

Comparison of High-Speed Water Entry Movement Process of Axisymmetric Bodies with Different Head Shapes

  • 摘要: 跨介质回转体高速入水是一个瞬态流动过程, 涉及到回转体与气相和液相的复杂多相流动。文中基于雷诺时均方程, 并考虑自然空化现象的多相流模型, 建立了入水空泡动力学数值模型, 并研究了不同头型回转体垂直入水过程运动特性和流体动力的影响规律。通过数值仿真结果与相关文献试验结果对比, 验证了模型和数值方法的有效性。结果表明, 不同头型回转体入水后的空泡特征与运动速度规律有很大的差异, 相应瞬态阻力系数也表现出很大差异; 在空泡闭合前, 体现出明显的回射流效应, 并影响空泡形态与回转体阻力的变化; 回转体的入水速度对空泡尺寸和冲击载荷具有非常直接的影响, 入水速度较低时回转体速度衰减相对更快, 阻力系数相对更大。

     

  • 图  1  不同网格下无量纲速度对比曲线

    Figure  1.  Comparison of dimensionless speeds under different grid numbers

    图  2  不同头型回转体尺寸

    Figure  2.  Sizes of axisymmetric bodies with different head shapes

    图  3  入水速度80 m/s下回转体不同时刻水相体积分数云图

    Figure  3.  Contours of water phase volume fraction of the axisymmetric body at different moments with velocity of water-entry of 80 m/s

    图  4  不同入水速度下平头型回转体入水空泡头部横截面径向压力和水相径向速度曲线

    Figure  4.  Radial pressures and water phase radial velocities of the head cross section of water-entry cavity for the flat-head axisymmetric body under different water-entry velocities

    图  5  不同入水速度下球头型回转体入水空泡头部横截面径向压力和水相径向速度曲线

    Figure  5.  Radial pressures and water phase radial velocities of the head cross section of water-entry cavity for the spherical-head axisymmetric body under different water-entry velocities

    图  6  不同入水速度下60°锥型回转体入水空泡头部横截面径向压力和水相径向速度曲线

    Figure  6.  Radial pressures and water phase radial velocities of the head cross section of water-entry cavity for the 60° conical axisymmetric body under different water-entry velocities

    图  7  不同入水速度下平头型回转体入水空泡尾部横截面径向压力和水相径向速度曲线

    Figure  7.  Radial pressures and water phase radial velocities of the tail cross section of water-entry cavity for the flat-head axisymmetric body under different water-entry velocities

    图  8  不同入水速度下球头型回转体入水空泡尾部横截面径向压力和水相径向速度曲线

    Figure  8.  Radial pressures and water phase radial velocities of the tail cross section of water-entry cavity for the spherical-head axisymmetric body under different water-entry velocities

    图  9  不同入水速度下60°锥型回转体入水空泡尾部横截面径向压力和水相径向速度曲线

    Figure  9.  Radial pressures and water phase radial velocities of the tail cross section of water-entry cavity for the 60° conical axisymmetric body under different water-entry velocities

    图  10  不同入水速度下不同头型回转体空泡最大半径随深度变化曲线

    Figure  10.  The maximum radius of the cavity of the axisymmetric bodies with different head shapes versus depths under different water-entry velocities

    图  11  不同入水速度下不同头型回转体空泡长度随深度变化曲线

    Figure  11.  The length of the cavity of axisymmetric bodies with different head shapes versus depth under different water-entry velocities

    图  12  不同入水速度下不同头型回转体无量纲速度随时间变化曲线

    Figure  12.  Dimensionless velocity curves of axisymmetric bodies with different head shapes versus time under different water-entry velocities

    图  13  运动末期不同头型回转体无量纲速度对比曲线

    Figure  13.  Dimensionless velocity curves of axisymmetric bodies with different head shapes at the end of the movement

    图  14  不同入水速度下不同头型回转体阻力系数随时间变化曲线

    Figure  14.  Drag coefficient curves of axisymmetric bodies with different head shapes versus time under different water-entry velocities

    图  15  不同时刻不同头型回转体瞬时阻力系数对比曲线

    Figure  15.  Instantaneous drag coefficient curves of axisymmetric bodies with different head shapes at different moments

    图  16  不同入水速度下不同头型回转体过载随时间变化曲线

    Figure  16.  Overload cursev of axisymmetric bodies with different head shapes versus time under different water-entry velocities

    图  17  不同时刻不同头型回转体过载曲线对比

    Figure  17.  Overload curves of axisymmetric bodies with different head shapes at different moments

    图  18  不同入水速度下不同头型回转体最大压强随时间变化曲线

    Figure  18.  The maximum pressure curves of axisymmetric bodies with different head shapes versus time under different water-entry velocities

    图  19  不同时刻不同头型回转体最大压强对比曲线

    Figure  19.  The maximum pressure curves of axisymmetric bodies with different head shapes at different moments

    表  1  网格与时间步设置及速度误差

    Table  1.   Setup of grid number and time step, and velocitgy errors

    序号 网格数 内层网格
    尺寸/mm
    时间步长
    /10−7s
    误差
    /%
    1 66万 0.05 1.18 0.20
    2 46万 0.07 1.65 1.00
    3 32万 0.10 2.36 4.00
    4 22万 0.14 3.30 8.50
    5 15万 0.20 4.72 13.80
    下载: 导出CSV
  • [1] 王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

    Wang Cong, Xu Haiyu, Lu Jiaxing. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
    [2] Worthington A M, Cole R S. A study of splashes[M]. New York: Longmans Green and Company, 1908.
    [3] Bottomley G H. The impact of a model seaplane float on water: No583[R]. Washington, DC: NACA, 1919.
    [4] Von K T. The impact of seaplane floats during landing: NACA TN 321[R]. Washington USA: National Advisory Committee for Aeronautics, 1929: 1-8.
    [5] Wagner V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech, 1932(12): 193-215.
    [6] Truscott T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2009.
    [7] Aristoff J M, Truscott T T, Techet A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3): 70-340.
    [8] Truscott T T, Beal D N, Techet A H. Shallow angle water entry of ballistic projectiles[C]//Proceedings of the 7th International Symposium on Cavitation PREPRINT. Ann Arbor, Michigan, USA: [s. n.], 2009.
    [9] Gong K, Lui H. Numerical simulation of circular disk entry water by an axisymmetrical SPH model in cylindrical coordinates[C]//Proceedings of the fifth international conference on fluid mechanics, Shanghai, China: Tsinghua University Press & Springer, 2007.
    [10] Zhang K, Yan K, Chu X S, et al. Numerical simulation of the water-entry of body based on the Lattice Boltzmann method[C]//2010’ International conference on hydrodynamics. Shanghai: ICHD, 2010.
    [11] Zhang K, Yan K, Chu X S, et al. Numerical simulation of constant speed water-entry cavity based on LBM[J]. Journal of Ship Mechanics, 2010, 14(10): 1129-1133.
    [12] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
    [13] 魏英杰, 杨柳, 王聪, 等. 超弹性球体垂直入水空泡流动研究[J]. 空气动力学学报, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132
    [14] Guo Z, Zhang W, Xiao X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49(2): 43-60.
    [15] 苗圃, 祁晓斌, 王佳雯. 圆柱体高速入水数值模拟研究[J]. 舰船科学技术, 2022, 44(2): 1-5. doi: 10.3404/j.issn.1672-7649.2022.02.001
    [16] 杨晓光, 党建军, 王鹏, 等. 波浪对航行体高速入水载荷特性影响[J]. 兵工学报, 2022, 43(2): 355-362. doi: 10.3969/j.issn.1000-1093.2022.02.013

    Yang Xiaoguang, Dang Jianjun, Wang Peng, et al. The influence of waves on the impact load during high-speed water-entry of a vehicle[J]. Acta Armamentarii, 2022, 43(2): 355-362. doi: 10.3969/j.issn.1000-1093.2022.02.013
    [17] 明付仁, 王嘉捷, 刘文韬, 等. 高速跨介质入水多相流动与流固耦合特性研究综述[J]. 空气动力学学报, 2024, 42(1): 68-85. doi: 10.7638/kqdlxxb-2023.0197
    [18] Yang D, Xiong Y L, Guo X F. Drag reduction of a rapid vehicle in supercavitating flow[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(1): 35-44
    [19] 熊永亮, 郜冶, 王革. 水下超空泡航行体减阻能力的数值研究[J]. 弹道学报, 2007, 19(1): 51-54.

    Xiong Yongliang, Gao Ye, Wang Ge. Numerical study of drag reduction ability on supercavitation vehicle[J]. Journal of Ballistics, 2007, 19(1): 51-54.
    [20] Chen T, Huang W, Zhang W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles[J]. Ocean Engineering, 2019, 175: 16-24. doi: 10.1016/j.oceaneng.2019.02.021
    [21] 魏海鹏, 史崇镔, 孙铁志, 等. 基于 ALE 方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 112-123.
    [22] 汪振, 吴茂林, 孙玉松, 等. 基于多介质ALE算法的柱体高速垂直入水仿真[J]. 水下无人系统学报, 2020, 28(1): 81-88.

    Wang Zhen, Wu Maolin, Sun Yusong, et al. Multi-medium ale algorithm-based simulation of vertical and high-speed water entry of cylinder[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 81-88.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-06-11

目录

    /

    返回文章
    返回
    服务号
    订阅号