• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同头型回转体高速入水运动过程对比研究

王余 熊永亮 田轩麾 周福昌 刘翱 孙国仓

王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0028
引用本文: 王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 1-12 doi: 10.11993/j.issn.2096-3920.2024-0028
WANG Yu, XIONG Yongliang, TIAN Xuanhui, ZHOU Fuchang, LIU Ao, SUN Guocang. Comparative study on the high-speed water entry movement process of revolving bodies with different head shapes[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0028
Citation: WANG Yu, XIONG Yongliang, TIAN Xuanhui, ZHOU Fuchang, LIU Ao, SUN Guocang. Comparative study on the high-speed water entry movement process of revolving bodies with different head shapes[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0028

不同头型回转体高速入水运动过程对比研究

doi: 10.11993/j.issn.2096-3920.2024-0028
基金项目: 国家自然科学基金项目资助(11872187).
详细信息
    通讯作者:

    熊永亮(1981-), 男, 教授, 博士生导师, 主要研究方向为水下航行器减阻降噪与跨介质飞行器降载技术.

  • 中图分类号: U674; TJ630

Comparative study on the high-speed water entry movement process of revolving bodies with different head shapes

  • 摘要: 跨介质回转体武器在对水下目标发动攻击时, 都要经历一个从空中弹道转变为水下弹道的跨介质入水过程, 这是一个时间极短的瞬态流动过程, 涉及到运动物体与气相和液相的复杂多相流动。文中基于雷诺时均方程, 并考虑自然空化现象的多相流模型, 建立了入水空泡动力学数值模型, 并研究了回转体垂直入水过程运动特性和流体动力的影响规律。通过数值仿真结果与文献中试验结果对比, 验证了模型和数值方法的有效性。结果表明, 不同头型回转体入水后的空泡特征与运动速度规律有很大的差异, 同时可知其相应瞬态阻力系数也表现出很大差异; 在空泡闭合前, 体现出明显的回射流效应, 并影响空泡形态与回转体阻力的变化; 回转体的入水速度对空泡尺寸和冲击载荷具有非常直接的影响, 入水速度较低时回转体速度衰减相对更快, 阻力系数相对更大。

     

  • 图  1  不同网格无量纲航行速度对比曲线

    Figure  1.  Comparison of dimensionless speed of vehicle by using different grids

    图  2  回转体尺寸示意图

    Figure  2.  Schematic diagram of vehicle dimensions

    图  3  回转体以80 m/s入水速度入水时不同时刻水相体积分数云图

    Figure  3.  Diagrams of water phase volume fraction at different times when the revolving body enters the water at an initial velocity of 80 m/s

    图  4  不同入水速度下平头型回转体入水空泡头部横截面流场径向压力和水相径向速度分布图

    Figure  4.  Radial pressure distribution diagram of the cross-sectional flow field at the head of a flat-head revolving body entering water under different initial water entry velocitie

    图  5  不同入水速度下球头型回转体入水空泡头部横截面流场径向压力和水相径向速度分布图

    Figure  5.  Radial pressure distribution diagram of the cross-sectional flow field at the water entry head of a spherical head revolving body under different initial water entry speed and Velocity distribution diagram

    图  6  不同入水速度下60°锥型回转体入水空泡头部横截面流场径向压力和水相径向速度分布图

    Figure  6.  Radial pressure distribution diagram of the cross-sectional flow field at the head of a 60° conical revolving body entering water under different initial water entry velocities and Radial velocity distribution diagram

    图  7  不同入水速度下平头型回转体入水空泡尾部横截面流场径向压力和水相径向速度分布图

    Figure  7.  Radial pressure distribution diagram of the cross-sectional flow field at the tail of the cavity tail of a flat-head revolving body entering water under different initial velocities of water entry and Radial velocity distribution diagram

    图  8  不同入水速度下球头型回转体入水空泡尾部横截面流场的径向压力和水相径向速度分布图

    Figure  8.  Radial pressure distribution diagram of the cross-sectional flow field at the end of the cavity of a spherical head revolving body entering water under different initial water entry velocities and Radial velocity distribution diagram

    图  9  不同入水速度下60°锥型回转体入水空泡尾部横截面流场的径向压力和水相径向速度分布图

    Figure  9.  Radial pressure distribution diagram of the cross-sectional flow field at the end of the cavity of a 60° conical revolving body entering water under different initial velocities of water entry and Radial velocity distribution diagram

    图  10  不同头型回转体在不同入水速度下形成的空泡在不同深度时的最大半径变化曲线

    Figure  10.  The maximum radius of the cavity formed by different head shapes at different initial velocities when entering the water at different depths

    图  11  不同头型回转体在不同入水速度下形成空泡在不同深度时的长度变化曲线

    Figure  11.  The length of the cavity formed by different head shapes at different initial velocities when entering the water at different depths

    图  12  不同头型回转体在不同入水速度下无量纲速度随时间变化曲线

    Figure  12.  Dimensionless velocity-time diagram of revolving bodies with different head shapes at different initial velocities when entering water

    图  13  不同头型回转体在运动末期的无量纲速度对比曲线

    Figure  13.  Dimensionless speed of revolving bodies with different head shapes at the end of motion

    图  14  不同头型的回转体在不同入水速度下阻力系数随时间变化曲线

    Figure  14.  Drag coefficient-time diagram of revolving bodies with different head shapes at different initial water entry velocities

    图  15  不同头型回转体在不同时刻瞬时阻力系数对比曲线

    Figure  15.  Instantaneous drag coefficient diagram of revolving bodies with different head shapes at different times

    图  16  不同头型回转体在不同入水速度下过载随时间变化曲线

    Figure  16.  Overload-time diagram of revolving bodies with different head shapes at different initial water entry velocitie

    图  17  不同头型回转体在不同时刻的过载曲线对比

    Figure  17.  Overload of revolving bodies with different head shapes at different times

    图  18  不同头型回转体在不同入水速度下压强随时间变化曲线

    Figure  18.  The maximum pressure-time diagram of revolving bodies with different head shapes under different initial speeds of entering the water

    图  19  不同头型回转体在不同时刻承受压强变化曲线

    Figure  19.  The maximum pressure experienced by rotating bodies with different head shapes at different times

    表  1  网格与时间步设置及最终速度误差

    Table  1.   Setup of grid number and time step, and its error

    网格 网格数 内层网格
    尺寸/mm
    时间步长
    /10−7s
    误差
    /%
    1 66万 0.05 1.18 0.20
    2 46万 0.07 1.65 1.00
    3 32万 0.10 2.36 4.00
    4 22万 0.14 3.30 8.50
    5 15万 0.20 4.72 13.80
    下载: 导出CSV
  • [1] 王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

    Wang Cong, Xu Haiyu, Lu Jiaxing. Status and prospects of investigation into multiphase flow field and motion characteristics of trans-medium vehicles during water entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
    [2] Worthington A M, Cole R S. A study of splashes[M]. New York: Longmans Green and Company, 1908.
    [3] Bottomley G H. The impact of a model seaplane float on water: No583[R]. Reports and Memoranda, Washington, DC: NACA, 1919
    [4] Von K T. The impact of seaplane floats during landing: NACA TN 321[R]. Washington USA: National Advisory Committee for Aeronautics, 1929: 1-8.
    [5] Wagner V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech, 1932(12): 193-215.
    [6] Truscott T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. City, Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2009.
    [7] Aristoff J M, Truscott T T, Techet A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3): 70-340.
    [8] Truscott T T, Beal D N, Techet A H. Shallow angle water entry of ballistic projectiles[C]//Proceedings of the 7th International Symposium on Cavitation PREPRINT. Ann Arbor, Michigan, USA: [s. n.], 2009.
    [9] Gong K, Lui H. Numerical simulation of circular disk entry water by an axisymmetrical SPH model in cylindrical coordinates[C]//Proceedings of the fifth international conference on fluid mechanics, Shanghai, China: Tsinghua University Press & Springer, 2007.
    [10] Zhang K, Yan K, Chu X S, et al. Numerical simulation of the water-entry of body based on the Lattice Boltzmann method [C]//2010’International conference on hydrodynamics. Shanghai: ICHD, 2010.
    [11] Zhang K, Yan K, Chu X S, et al. Numerical simulation of constant speed water-entry cavity based on LBM[J]. Journal of Ship Mechanics, 2010, 14(10): 1129-1133.
    [12] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027

    Shi Hancheng, Jiang Pei, Cheng Jinfang. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine's head shape[J]. Ship Science and Technology, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
    [13] 魏英杰, 杨柳, 王聪, 等. 超弹性球体垂直入水空泡流动研究[J]. 空气动力学学报, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132

    Wei Yingjie, Yang Liu, Wang Cong, et al. Vertical water entry of hyperelastic sphere[J]. Acta Aerodynamica Sinica, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132
    [14] Guo Z, Zhang W, Xiao X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49(2): 43-60.
    [15] 苗圃, 祁晓斌, 王佳雯. 圆柱体高速入水数值模拟研究[J]. 舰船科学技术, 2022, 44(2): 1-5. doi: 10.3404/j.issn.1672-7649.2022.02.001

    Miao Pu, Qi Xiaobin, Wamg Jiawen. Numerical study of the high speed water entry of the cylinder[J]. Ship Science and Technology, 2022, 44(2): 1-5. doi: 10.3404/j.issn.1672-7649.2022.02.001
    [16] 杨晓光, 党建军, 王鹏, 等. 波浪对航行体高速入水载荷特性影响[J]. 兵工学报, 2022, 43(2): 355-362. doi: 10.3969/j.issn.1000-1093.2022.02.013

    Yang Xiaoguang, Dang Jianjun, Wang Peng, et al. The Influence of Waves on the Impact Load during High-speed Water-entry of a Vehicle[J]. Acta Armamentarii, 2022, 43(2): 355-362. doi: 10.3969/j.issn.1000-1093.2022.02.013
    [17] 明付仁, 王嘉捷, 刘文韬, 等. 高速跨介质入水多相流动与流固耦合特性研究综述[J]. 空气动力学学报, 2024, 42(1): 68-85. doi: 10.7638/kqdlxxb-2023.0197

    Ming Furen, Wang Jiajie, Liu Wentao, et al. Review of multiphase flow and fluid-structure interaction of high-speed water entry[J]. Acta Aerodynamica Sinica, 2024, 42(1): 68-85. doi: 10.7638/kqdlxxb-2023.0197
    [18] Yang D, Xiong YL, Guo XF, Drag reduction of a rapid vehicle in supercavitating flow, International Journal of Naval Architecture and Ocean Engineering, V9, Issue 1, 2017: 35-44
    [19] 熊永亮, 郜冶, 王革. 水下超空泡航行体减阻能力的数值研究[J], 弹道学报, 2007, 19(1): 51-54.

    Xiong Yongliang, Gao Ye, Wang Ge. Numerical study of drag reduction ability on supercavitation vehicle[J]. Jour nal of Ballistics, 2007, 19(1): 51-54.
    [20] Chen T, Huang W, Zhang W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles[J]. Ocean Engineering, 2019, 175: 16-24. doi: 10.1016/j.oceaneng.2019.02.021
    [21] 魏海鹏, 史崇镔, 孙铁志, 等. 基于 ALE 方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 112-123.

    Wei Haipeng, Shi Congbin, Sun Tiezhi, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion and Shock Waves, 2021, 41(10): 112-123.
    [22] 汪振, 吴茂林, 孙玉松, 等. 基于多介质ALE算法的柱体高速垂直入水仿真[J]. 水下无人系统学报, 2020, 28(1): 81-88.

    Wang Zhen, Wu Maolin, Sun Yusong, et al. Multi-medium ale algorithm-based simulation of vertical and high-speed water entry of cylinder[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 81-88.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-06-11

目录

    /

    返回文章
    返回
    服务号
    订阅号