• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰孔约束条件下航行体垂直出水空泡演变数值研究

王浩 黄振贵 陈志华 郭则庆 王一航 刘想炎 那晓冬

王浩, 黄振贵, 陈志华, 等. 冰孔约束条件下航行体垂直出水空泡演变数值研究[J]. 水下无人系统学报, 2024, 32(3): 507-515 doi: 10.11993/j.issn.2096-3920.2024-0020
引用本文: 王浩, 黄振贵, 陈志华, 等. 冰孔约束条件下航行体垂直出水空泡演变数值研究[J]. 水下无人系统学报, 2024, 32(3): 507-515 doi: 10.11993/j.issn.2096-3920.2024-0020
WANG Hao, HUANG Zhengui, CHEN Zhihua, GUO Zeqing, WANG Yihang, LIU Xiangyan, NA Xiaodong. Numerical Research on Evolution of Vertical Water-Exit Cavity of Vehicle under Ice Hole Constraint[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 507-515. doi: 10.11993/j.issn.2096-3920.2024-0020
Citation: WANG Hao, HUANG Zhengui, CHEN Zhihua, GUO Zeqing, WANG Yihang, LIU Xiangyan, NA Xiaodong. Numerical Research on Evolution of Vertical Water-Exit Cavity of Vehicle under Ice Hole Constraint[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 507-515. doi: 10.11993/j.issn.2096-3920.2024-0020

冰孔约束条件下航行体垂直出水空泡演变数值研究

doi: 10.11993/j.issn.2096-3920.2024-0020
详细信息
    作者简介:

    王浩:王 浩(1998-), 在读博士, 主要研究方向为极地出入水跨介质动力学

  • 中图分类号: TJ630.1; U674

Numerical Research on Evolution of Vertical Water-Exit Cavity of Vehicle under Ice Hole Constraint

  • 摘要: 高纬度地区在冬季不可避免地出现结冰期, 考虑到低温冰区水下发射过程中面临冰层裂隙的特殊力学环境, 扩展低温冰区中的潜射海洋装备具有重要的工程价值。浮冰的存在必然增强潜射航行体高速出水过程中的非线性。文中采用动态流体相互作用模块对航行体建立6自由度运动模型, 通过对不同冰孔尺寸、冰孔形状约束条件下潜射航行体的水下运动及穿越水面阶段对比分析, 探究冰孔对出水空泡演变的影响。研究发现: 在冰孔约束出水过程中, 冰孔对空泡具有明显的束缚作用, 且束缚作用随着冰孔尺寸的减小而增强; 相同冰孔形状下, 冰孔尺寸越小, 其对航行体俯仰运动特性影响越大; 相同冰孔尺寸下, 圆形冰孔对航行体俯仰运动特性影响大于正方形和三角形冰孔。

     

  • 图  1  航行体与不同尺寸的冰孔示意图(俯视图)

    Figure  1.  Schematic diagram of the vehicle and different sizes of ice holes (top view)

    图  2  计算域及网格划分

    Figure  2.  Schematic of the boundary conditions and the meshing

    图  3  空泡形态对比

    Figure  3.  Comparison of cavity evolution

    图  4  航行体速度与位移对比

    Figure  4.  Comparison of velocity and displacement of the vehicle

    图  5  不同网格数量下航行体竖直方向位移

    Figure  5.  The vertical displacement of the vehicle with different grid numbers

    图  6  航行体表面y+最大值

    Figure  6.  The maximum value of y+ on the vehicle

    图  7  不同冰孔尺寸下出水空泡形态演变

    Figure  7.  The water-exit cavity evolution with different ice hole sizes

    图  8  航行体在不同冰孔尺寸中的沾湿程度

    Figure  8.  The wetting degree of the vehicle with different ice hole sizes

    图  9  不同冰孔尺寸下空泡体积变化

    Figure  9.  The volume change of the cavity with different ice hole sizes

    图  10  不同冰孔尺寸下航行体俯仰运动特性

    Figure  10.  The motion chacteristics of the vehicle with different ice hole sizes

    图  11  航行体与不同形状的冰孔示意图(俯视图)

    Figure  11.  Schematic diagram of the vehicle and different shapes of ice holes (top view)

    图  12  不同冰孔形状下出水空泡形态演变

    Figure  12.  The water-exit cavity evolution with different ice hole shapes

    图  13  航行体在不同冰孔形状中的沾湿程度

    Figure  13.  The wetting degree of the vehicle with different ice hole shapes

    图  14  不同冰孔形状下空泡体积变化

    Figure  14.  The volume change of cavity with different ice hole shapes

    图  15  不同冰孔形状下航行体俯仰运动特性

    Figure  15.  The motion chacteristics of the vehicle with different ice hole shapes

  • [1] Quan X B, Li Y, Wei H P, et al. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles[J]. Journal of Ship Mechanics, 2008, 12(4): 545-549.
    [2] Brennen C E. Cavitation and bubble dynamics[M]. Cambridge, USA: Cambridge University Press, 2013.
    [3] Huang B, Zhao Y, Wang G Y. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows[J]. Computers & Fluids, 2014, 92: 113-124.
    [4] Xu H, Wei Y, Wang C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater[J]. Ocean Engineering, 2019, 189: 106382. doi: 10.1016/j.oceaneng.2019.106382
    [5] Sun T Z, Zhang X S, Xu C, et al. Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows[J]. European Journal of Mechanics B Fluids, 2019, 76: 223-232. doi: 10.1016/j.euromechflu.2019.02.011
    [6] Moore T E, Gautier D L. The 2008 Circum-Arctic Resource Appraisal[R]. VA, US: U.S. Geological Survey, 2017.
    [7] Guo R, Sun T Y. The arctic strategy under Rok’s “new northern policy”: Process and constraints[J]. Journal of International Relations, 2020(3): 136-153, 159.
    [8] Zhang N, Wang J, Wu Y S. A modelling study of ice effect on tidal damping in the Bohai Sea[J]. Ocean Engineering, 2019, 173: 748-760. doi: 10.1016/j.oceaneng.2019.01.049
    [9] Nam J, Park I, Lee H J, et al. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5: 210-226. doi: 10.2478/IJNAOE-2013-0128
    [10] Moore G W K, Howell S E L, Brady M. Anomalous collapses of Nares Strait Ice arches leads to enhanced export of arctic sea ice[J]. Nature Communications, 2021, 12(1): 1-8. doi: 10.1038/s41467-020-20314-w
    [11] Logvinovich G V. Hydrodynamics of flows with free boundaries[M]. Naukova Dumka: Kiev, Ukraine, 1969.
    [12] Brennen C E. Cavitation and bubble dynamics[M]. New York, NY, USA: Oxford University, 1995.
    [13] Kunz R F, Boger D A, Stinebring D R A. Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids, 2000, 29(8): 849-875.
    [14] Moyo S, Greenhow M. Free motion of a cylinder moving below and through a free surface[J]. Applied Ocean Research, 2000, 22(1): 31-44. doi: 10.1016/S0141-1187(99)00024-3
    [15] Korobkin A. A linearized model of water exit[J]. Journal of Fluid Mechanics, 2013, 737: 368-386. doi: 10.1017/jfm.2013.573
    [16] 赵蛟龙, 郭百森, 孙龙泉, 等. 细长体倾斜出水的实验研究[J]. 爆炸与冲击, 2016, 36(1): 113-120. doi: 10.11883/1001-1455(2016)01-0113-08

    Zhao Jiaolong, Guo Baisen, Sun Longquan, et al. Experiment study on oblique water-exit of slender bodies[J]. Explosion and Shock Waves, 2016, 36(1): 113-120. doi: 10.11883/1001-1455(2016)01-0113-08
    [17] Chen S R, Shi Y, Pan G. Experimental research on cavitation evolution and movement characteristics of the projectile during vertical launching[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1359. doi: 10.3390/jmse9121359
    [18] Chen Y, Li J, Gong Z X. LES investigation on cavitating flow structures and loads of water-exiting submerged vehicles using a uniform filter of octree-based grids[J]. Ocean Engineering, 2021, 225: 108811. doi: 10.1016/j.oceaneng.2021.108811
    [19] Nguyen V, Phan T, Duy T. Unsteady cavitation around submerged and water-exit projectiles under the effect of the free surface: A numerical study[J]. Ocean Engineering, 2022, 263: 112368 doi: 10.1016/j.oceaneng.2022.112368
    [20] Wang H, Luo Y C, Chen Z H, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity[J]. Ocean Engineering, 2022, 256: 111464. doi: 10.1016/j.oceaneng.2022.111464
    [21] Wang H, Huang Z G, Huang D. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds[J]. Ocean Engineering, 2022, 265: 112548. doi: 10.1016/j.oceaneng.2022.112548
    [22] Zhang G Y, You C, Wei H P, et al. Experimental study on the effects of brash ice on the water-exit dynamics of an underwater vehicle[J]. Applied Ocean Research, 2021, 117: 102948. doi: 10.1016/j.apor.2021.102948
    [23] You C, Sun T Z, Zhang G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder[J]. Ocean Engineering, 2022, 245: 110443. doi: 10.1016/j.oceaneng.2021.110443
    [24] Wang H, Huang Z G, Guo Z Q. Numerical study on the influence of floating ice on the water-exit hydrodynamic characteristics of a trans-media vehicle[J]. Journal of Physics: Conference Series, 2023, 2478: 112008. doi: 10.1088/1742-6596/2478/11/112008
    [25] Wang H, Huang Z G, Cai X W, et al. Analysis of the water-exit cavity evolution and motion characteristics of an underwater vehicle under the effect of floating ice[J]. Ocean Engineering, 2024, 300: 117374. doi: 10.1016/j.oceaneng.2024.117374
    [26] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
  • 加载中
图(15)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  29
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-04-03
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-05-15

目录

    /

    返回文章
    返回
    服务号
    订阅号