[1] |
Quan X B, Li Y, Wei H P, et al. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles[J]. Journal of Ship Mechanics, 2008, 12(4): 545-549.
|
[2] |
Brennen C E. Cavitation and bubble dynamics[M]. Cambridge, USA: Cambridge University Press, 2013.
|
[3] |
Huang B, Zhao Y, Wang G Y. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows[J]. Computers & Fluids, 2014, 92: 113-124.
|
[4] |
Xu H, Wei Y, Wang C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater[J]. Ocean Engineering, 2019, 189: 106382. doi: 10.1016/j.oceaneng.2019.106382
|
[5] |
Sun T Z, Zhang X S, Xu C, et al. Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows[J]. European Journal of Mechanics B Fluids, 2019, 76: 223-232. doi: 10.1016/j.euromechflu.2019.02.011
|
[6] |
Moore T E, Gautier D L. The 2008 Circum-Arctic Resource Appraisal[R]. VA, US: U.S. Geological Survey, 2017.
|
[7] |
Guo R, Sun T Y. The arctic strategy under Rok’s “new northern policy”: Process and constraints[J]. Journal of International Relations, 2020(3): 136-153, 159.
|
[8] |
Zhang N, Wang J, Wu Y S. A modelling study of ice effect on tidal damping in the Bohai Sea[J]. Ocean Engineering, 2019, 173: 748-760. doi: 10.1016/j.oceaneng.2019.01.049
|
[9] |
Nam J, Park I, Lee H J, et al. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5: 210-226. doi: 10.2478/IJNAOE-2013-0128
|
[10] |
Moore G W K, Howell S E L, Brady M. Anomalous collapses of Nares Strait Ice arches leads to enhanced export of arctic sea ice[J]. Nature Communications, 2021, 12(1): 1-8. doi: 10.1038/s41467-020-20314-w
|
[11] |
Logvinovich G V. Hydrodynamics of flows with free boundaries[M]. Naukova Dumka: Kiev, Ukraine, 1969.
|
[12] |
Brennen C E. Cavitation and bubble dynamics[M]. New York, NY, USA: Oxford University, 1995.
|
[13] |
Kunz R F, Boger D A, Stinebring D R A. Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids, 2000, 29(8): 849-875.
|
[14] |
Moyo S, Greenhow M. Free motion of a cylinder moving below and through a free surface[J]. Applied Ocean Research, 2000, 22(1): 31-44. doi: 10.1016/S0141-1187(99)00024-3
|
[15] |
Korobkin A. A linearized model of water exit[J]. Journal of Fluid Mechanics, 2013, 737: 368-386. doi: 10.1017/jfm.2013.573
|
[16] |
赵蛟龙, 郭百森, 孙龙泉, 等. 细长体倾斜出水的实验研究[J]. 爆炸与冲击, 2016, 36(1): 113-120. doi: 10.11883/1001-1455(2016)01-0113-08Zhao Jiaolong, Guo Baisen, Sun Longquan, et al. Experiment study on oblique water-exit of slender bodies[J]. Explosion and Shock Waves, 2016, 36(1): 113-120. doi: 10.11883/1001-1455(2016)01-0113-08
|
[17] |
Chen S R, Shi Y, Pan G. Experimental research on cavitation evolution and movement characteristics of the projectile during vertical launching[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1359. doi: 10.3390/jmse9121359
|
[18] |
Chen Y, Li J, Gong Z X. LES investigation on cavitating flow structures and loads of water-exiting submerged vehicles using a uniform filter of octree-based grids[J]. Ocean Engineering, 2021, 225: 108811. doi: 10.1016/j.oceaneng.2021.108811
|
[19] |
Nguyen V, Phan T, Duy T. Unsteady cavitation around submerged and water-exit projectiles under the effect of the free surface: A numerical study[J]. Ocean Engineering, 2022, 263: 112368 doi: 10.1016/j.oceaneng.2022.112368
|
[20] |
Wang H, Luo Y C, Chen Z H, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity[J]. Ocean Engineering, 2022, 256: 111464. doi: 10.1016/j.oceaneng.2022.111464
|
[21] |
Wang H, Huang Z G, Huang D. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds[J]. Ocean Engineering, 2022, 265: 112548. doi: 10.1016/j.oceaneng.2022.112548
|
[22] |
Zhang G Y, You C, Wei H P, et al. Experimental study on the effects of brash ice on the water-exit dynamics of an underwater vehicle[J]. Applied Ocean Research, 2021, 117: 102948. doi: 10.1016/j.apor.2021.102948
|
[23] |
You C, Sun T Z, Zhang G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder[J]. Ocean Engineering, 2022, 245: 110443. doi: 10.1016/j.oceaneng.2021.110443
|
[24] |
Wang H, Huang Z G, Guo Z Q. Numerical study on the influence of floating ice on the water-exit hydrodynamic characteristics of a trans-media vehicle[J]. Journal of Physics: Conference Series, 2023, 2478: 112008. doi: 10.1088/1742-6596/2478/11/112008
|
[25] |
Wang H, Huang Z G, Cai X W, et al. Analysis of the water-exit cavity evolution and motion characteristics of an underwater vehicle under the effect of floating ice[J]. Ocean Engineering, 2024, 300: 117374. doi: 10.1016/j.oceaneng.2024.117374
|
[26] |
Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
|