Comparative Analysis of Power Propulsion System Configurations of Air-Water Trans-Medium Torpedoes
-
摘要: 目前外军装备的跨介质鱼雷均为助推运载器+鱼雷战斗部的构成形式, 空水复用动力推进系统可使运载器与鱼雷合二为一, 从而有效提高水下攻击有效载荷量与航程, 且全寿命成本低廉, 并有发展多次出入水功能的潜力。空水复用动力推进系统在常规鱼雷动力系统的基础上改造, 使之具备空中推进和多模式切换的能力。文中针对3类可能的空水复用动力推进系统构型, 从运行原理、系统性能、燃料选择、系统控制、研发难度以及发展潜力等方面展开讨论。研究结果表明, 对于轻型跨介质鱼雷, 可采用单一OTTO-II燃料的构型, 对于重型鱼雷则倾向于采用煤油和OTTO-II双燃料双燃烧室系统的构型。Abstract: At present, the trans-medium torpedoes equipped by foreign military forces are all composed of booster carriers and torpedo warheads. The air-water reusable power propulsion system can integrate the carrier and torpedo into one, which can achieve larger effective underwater attack payloads, long range, and lower life cycle costs, and it has the potential to develop multiple water-entry and exit functions. The air-water reusable power propulsion system is modified based on the conventional torpedo power system, making it capable of air propulsion and multi-mode switching. In this paper, three possible configurations of air-water reusable power propulsion systems were discussed in terms of operating principles, system performance, fuel selection, system control, research and development difficulties, and development potential. It is believed that for light trans-medium torpedoes, the configuration with the single OTTO-II fuel can be used, while for heavy torpedoes, the configuration with kerosene and OTTO-II dual-fuel and dual-combustion chamber system is preferred.
-
Key words:
- torpedo /
- trans-medium /
- power propulsion system /
- system control
-
表 1 跨介质航行器动力方式
Table 1. Dynamic mode of cross-medium vehicles
样机名称 供能方式 水下/水面推进 空中推进 ACAT 甲醇燃料 小直径螺旋桨 小直径螺旋桨 Sea Scout 航空煤油 空气螺旋桨 空气螺旋桨 Flying Fish 锂电池/太阳能电池 无动力漂浮 2个反旋电机 King Fisher 航空煤油 喷气式推进 喷气式推进 AquaMAV 电池 螺旋桨推进 螺旋桨推进 -
[1] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13.Feng Jinfu, Hu Junhua, Qi Duo. Study on development needs and key technologies of air-water trans-media vehicle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13. [2] 谭骏怡, 胡俊华, 马宗成, 等. 水空跨介质航行器俯冲过程航迹角控制研究[J]. 飞行力学, 2019, 37(1): 34-38, 49.Tan Junyi, Hu Junhua, Ma Zongcheng, et al. Research on flight path angle control of trans-media aerial underwater vehicle during diving process[J]. Flight Dynamics, 2019, 37(1): 34-38, 49. [3] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science And Technology, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032 [4] 刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(S2): 1-14.Liu Xiangzhi, Cui Weicheng. An overview and analysis of the water-air amphibious vehicles[J]. Chinese Journal of Ship Research, 2019, 14(S2): 1-14. [5] 孙祥仁, 曹建, 姜言清, 等. 潜空跨介质无人航行器发展现状与展望[J]. 数字海洋与水下攻防, 2020, 3(3): 178-184.Sun Xiangren, Cao Jian, Jiang Yanqing, et al. Development status of unmanned underwater-aerial cross-domain vehicles[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 178-184. [6] Petrov G. Flying submarine[J]. J. fleet, 1955, 52(3): 52-53. [7] 张军, 曹耀初, 高德宝等. 水下-空中跨介质航行器研究进展[C]//中国造船工程学会船舶力学学术委员会第九届全体会议论文集. 无锡: 中国造船工程学会, 2018. [8] 陈建峰, 杨龙塾. 美国DARPA提出的“潜水飞机”概念[J]. 现代舰船, 2009(3): 38-39. [9] 黄安迪. 水空两用发动机燃烧室设计与研究[D]. 南昌: 南昌航空大学, 2014. [10] Hrishikeshavan V, Bogdanowicz C, Chopra I. Design, performance and testing of a quad rotor biplane micro air vehicle for multi role missions[J]. International Journal of Micro Air Vehicles, 2014, 6(3): 155-173. doi: 10.1260/1756-8293.6.3.155 [11] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(1): 102-114.Yang Xingbang, Liang Jianhong, Wen Li, et al. Research status of water-air amphibious trans-media unmanned vehicle[J]. Robot, 2018, 40(1): 102-114. [12] 史小锋, 党建军, 梁跃, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001Shi Xiaofeng, Dang Jianjun, Liang Yue, et al. Development status and trend of energy and power technology for underwater attack and defensive weapons[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001 [13] 关世义, 冯郅仲. 国外飞航式反潜导弹浅析[J]. 空天技术, 2004(10): 1-6, 9. doi: 10.3969/j.issn.1009-1319.2004.10.001Guan Shiyi, Feng Zhizhong. A brief analysis of foreign flying anti-submarine missiles[J]. Aerospace Technology, 2004(10): 1-6, 9. doi: 10.3969/j.issn.1009-1319.2004.10.001 [14] 王瀚伟, 罗凯, 黄闯, 等. 空水共用涡轮机气动设计与数值仿真[J]. 兵工学报, 2022, 43(12): 3151-3161. doi: 10.12382/bgxb.2021.0691Wang Hanwei, Luo Kai, Huang Chuang, et al. Aerodynamic design and numerical simulation of air-water shared turbines[J]. Acta Armamentarii, 2022, 43(12): 3151-3161. doi: 10.12382/bgxb.2021.0691 [15] 张安静, 秦侃, 王瀚伟, 等. 二次燃烧反应对空水两用涡轮机性能影响[J]. 航空动力学报, 2024(39): 1-15.Zhang Anjing, Qin Kan, Wang Hanwei, et al. Research on influence of secondary combustion reaction on the performance of air-underwater dual-mode turbines[J]. Journal of Aerospace Power, 2024(39): 1-15.