• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向任务的海空跨域网络路由协议

张皓波 王彪 韩兆越

张皓波, 王彪, 韩兆越. 一种面向任务的海空跨域网络路由协议[J]. 水下无人系统学报, 2024, 32(4): 695-702 doi: 10.11993/j.issn.2096-3920.2024-0015
引用本文: 张皓波, 王彪, 韩兆越. 一种面向任务的海空跨域网络路由协议[J]. 水下无人系统学报, 2024, 32(4): 695-702 doi: 10.11993/j.issn.2096-3920.2024-0015
ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 695-702. doi: 10.11993/j.issn.2096-3920.2024-0015
Citation: ZHANG Haobo, WANG Biao, HAN Zhaoyue. A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 695-702. doi: 10.11993/j.issn.2096-3920.2024-0015

一种面向任务的海空跨域网络路由协议

doi: 10.11993/j.issn.2096-3920.2024-0015
基金项目: 国家自然科学基金项目资助(52071164).
详细信息
    作者简介:

    张皓波(1998-), 男, 在读硕士, 主要研究方向为水下传感器网络

  • 中图分类号: TJ6; U675.7

A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks

  • 摘要: 海空跨域网络由水下子网和水上子网构成, 为了充分利用资源, 多种不同的应用程序共享相同的物理设施, 不同的数据包共存于同一网络中, 需要差异化的传送策略来满足应用需求, 但现有的路由协议往往无法根据应用需求来提供个性化的服务。针对该问题, 文中提出了一种面向任务的海空跨域网络路由协议, 该协议根据任务类型的不同, 调整转发因子的计算方式, 并以此为特定的任务类型选择最合适的下一跳节点。此外, 协议中还增加了预处理层来完成异构网络之间的通信。仿真结果表明, 与其他典型的协议相比, 文中所提协议能够根据任务的特定需求实现最优的传输策略。

     

  • 图  1  海空跨域网络场景图

    Figure  1.  Scenario of sea-air cross-domain network

    图  2  海空跨域网络结构图

    Figure  2.  Architecture of sea-air cross-domain network

    图  3  预处理层工作原理图

    Figure  3.  Working principle diagram of the preprocessing layer

    图  4  节点数对平均端到端时延的影响

    Figure  4.  The influence of the number of nodes on the average end-to-end delay

    图  5  流速对平均端到端时延的影响

    Figure  5.  The influence of the flow rate on the average end-to-end delay

    图  6  节点数对总能耗的影响

    Figure  6.  The influence of the number of nodes on total energy consumption

    图  7  流速对总能耗的影响

    Figure  7.  The influence of flow rate on total energy consumption

    图  8  节点数对网络寿命的影响

    Figure  8.  The influence of the number of nodes on network lifespan

    图  9  水面流速对网络寿命的影响

    Figure  9.  The influence of water surface flow rate on network lifespan

    表  1  仿真参数设置

    Table  1.   Settings of simulation parameters

    参数
    部署区域 1.5 km×1.5 km×1.5 km
    水下源节点数目 1
    水下中继节点数目 100~500
    浮标节点数目 5
    无人机节点数目 5
    数据负载/Byte 50
    数据包发送间隔/s 40
    能量模型 NS3: Aqua Sim Energy Model
    噪声模型 NS3: Aqua Sim Const Noise Gen
    水上Mac NS3: Adhoc Wifi Mac
    水下Mac NS3: Aqua Sim Broadcast Mac
    水上物理层模型 NS3: Yans Wifi Phy
    水下物理层模型 NS3: Aqua Sim Phy Cmn
    下载: 导出CSV
  • [1] KONG M, KANG C H, ALKHAZRAGI O, et al. Survey of energy-autonomous solar cell receivers for satellite-air-ground-ocean optical wireless communication[J]. Progress in Quantum Electronics, 2020, 74: 100300. doi: 10.1016/j.pquantelec.2020.100300
    [2] ENHOS K, DEMIRORS E, UNAL D, et al. Software-defined visible light networking for bi-directional wireless communication across the air-water interface[C]//18th Annual IEEE International Conference on Sensing, Communication, and Networking(SECON). Rome, Italy: IEEE, 2021: 1-9.
    [3] CARVER C J, TIAN Z, ZHANG H, et al. Amphilight: Direct air-water communication with laser light[J]. GetMobile: Mobile Computing and Communications, 2021, 24(3): 26-29. doi: 10.1145/3447853.3447862
    [4] LUO H, XIE X, HAN G, et al. Multimodal acoustic-RF adaptive routing protocols for underwater wireless sensor networks[J]. IEEE Access, 2019, 7: 134954-134967. doi: 10.1109/ACCESS.2019.2942060
    [5] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021(10): 63-67.

    SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021(10): 63-67.
    [6] 李壮, 孔军, 刘鹏, 等. 水下智能跨域异构网络设计[J]. 舰船科学技术, 2020, 42(23): 137-140.

    LI Z, KONG J, LIU P, et al. Design of underwater intelligent cross domain heterogeneous network[J]. Ship Science and Technology, 2020, 42(23): 137-140.
    [7] GUO H, LI J, LIU J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24(1): 53-87.
    [8] QIU T, CHEN N, LI K, et al. Heterogeneous ad hoc networks: architectures, advances and challenges[J]. Ad Hoc Networks, 2017, 55: 143-152. doi: 10.1016/j.adhoc.2016.11.001
    [9] 罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.

    LUO H J, BU F F, WANG J L, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90.
    [10] LUO H, WANG J, BU F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600
    [11] CHEN L K, SHAO Y, DI Y. Underwater and water-air optical wireless communication[J]. Journal of Lightwave Technology, 2022, 40(5): 1440-1452. doi: 10.1109/JLT.2021.3125140
    [12] ZHU S, CHEN X, LIU X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274. doi: 10.1016/j.pquantelec.2020.100274
    [13] JI Z, FU Y, LI J, et al. Photoacoustic communication from the air to underwater based on low-cost passive relays[J]. IEEE Communications Magazine, 2021, 59(1): 140-143. doi: 10.1109/MCOM.001.2000607
    [14] QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: Theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 483-492.
    [15] WANG H, YANG K, ZHENG K, et al. Experimental investigation on electromagnetic wave propagation across sea-to-air interface[C]//2014 Oceans. Taipei: IEEE, 2014: 1-6.
    [16] WATSON M C, BOUSQUET J F, FORGET A. Evaluating the feasibility of magnetic induction to cross the air-water boundary[C]//2021 Fifth Underwater Communications and Networking Conference(UComms). Lerici, Italy: IEEE, 2021: 1-4.
    [17] PAL A, KANT K. NFMI: Near field magnetic induction based communication[J]. Computer Networks, 2020, 181(9): 107548.
    [18] 李从改, 刘锋, 徐涴砯, 等. 智能水下应急通信一体化探讨[J]. 数字海洋与水下攻防, 2022, 5(4): 285-292.

    LI C G, LIU F, XU W P, et al. Discussion on integration of intelligent underwater emergency communication[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 285-292.
    [19] LIU J, DU X, CUI J, et al. Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345-5358. doi: 10.1109/JIOT.2020.2977402
    [20] WANG B, ZHANG H, ZHU Y, et al. Adaptive power-controlled depth-based routing protocol for underwater wireless sensor networks[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1567. doi: 10.3390/jmse11081567
    [21] WANG Q, DAI H N, WANG Q, et al. On connectivity of UAV-assisted data acquisition for underwater internet of things[J]. IEEE Internet of Things Journal, 2020, 7(6): 5371-5385. doi: 10.1109/JIOT.2020.2979691
    [22] PERRONE L F, HENDERSON T R, WATROUS M, et al. The design of an output data collection framework for NS-3[C]//The conference theme for WSC’13 is Simulation: Making Decisions in a Complex World. Washington, D.C., USA: IEEE, 2013: 2984-2995.
    [23] YAN H, SHI Z J, CUI J H. DBR: Depth-based routing for underwater sensor networks[C]//networking 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet: 7th International IFIP-TC6 Networking Conference. Singapore: IFIP Networking Conference, 2008: 72-86.
    [24] WAHID A, LEE S, JEONG H J, et al. EEDBER: Energy-efficient depth-based routing protocol for underwater wireless sensor networks[J]. Advanced Computer Science and Information Technology, 2011, 195: 223-234.
    [25] WANG Z, HAN G, QIN H, et al. An energy-aware and void-avoidable routing protocol for underwater sensor networks[J]. IEEE Access, 2018, 6: 7792-7801. doi: 10.1109/ACCESS.2018.2805804
    [26] MARTIN R, ZHU Y, PU L, et al. Aqua-sim next generation: A NS-3 based simulator for underwater sensor networks[C]//Proceedings of the 10th International Conference on Underwater Networks & Systems. Washington, D.C., USA: Association for Computing Machinery, 2015: 1-2.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  39
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-13
  • 修回日期:  2024-04-09
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回
    服务号
    订阅号