A Task-Oriented Routing Protocol for Sea-Air Cross-Domain Networks
-
摘要: 海空跨域网络由水下子网和水上子网构成, 为了充分利用资源, 多种不同的应用程序共享相同的物理设施, 不同的数据包共存于同一网络中, 需要差异化的传送策略来满足应用需求, 但现有的路由协议往往无法根据应用需求来提供个性化的服务。针对该问题, 文中提出了一种面向任务的海空跨域网络路由协议, 该协议根据任务类型的不同, 调整转发因子的计算方式, 并以此为特定的任务类型选择最合适的下一跳节点。此外, 协议中还增加了预处理层来完成异构网络之间的通信。仿真结果表明, 与其他典型的协议相比, 文中所提协议能够根据任务的特定需求实现最优的传输策略。Abstract: Sea-air cross-domain networks consist of underwater and surface subnets. In order to fully utilize resources, enable multiple applications to share the same physical infrastructure, and make different data packets coexist within the same network, differentiated transmission strategies are needed to meet application demands. However, existing routing protocols often fail to provide personalized services based on application requirements. To address this issue, a task-oriented routing protocol for sea-air cross-domain networks was proposed. The protocol adjusted the calculation method of forwarding factors based on the types of tasks, thereby selecting the most suitable next-hop node for specific task types. Furthermore, a preprocessing layer was added to the protocol to facilitate communication between heterogeneous networks. Simulation results show that compared to other typical protocols, the proposed protocol achieves optimal transmission strategies based on specific task requirements.
-
Key words:
- task-oriented /
- sea-air cross-domain network /
- network communication /
- routing protocol
-
表 1 仿真参数设置
Table 1. Settings of simulation parameters
参数 值 部署区域 1.5 km×1.5 km×1.5 km 水下源节点数目 1 水下中继节点数目 100~500 浮标节点数目 5 无人机节点数目 5 数据负载/Byte 50 数据包发送间隔/s 40 能量模型 NS3: Aqua Sim Energy Model 噪声模型 NS3: Aqua Sim Const Noise Gen 水上Mac NS3: Adhoc Wifi Mac 水下Mac NS3: Aqua Sim Broadcast Mac 水上物理层模型 NS3: Yans Wifi Phy 水下物理层模型 NS3: Aqua Sim Phy Cmn -
[1] KONG M, KANG C H, ALKHAZRAGI O, et al. Survey of energy-autonomous solar cell receivers for satellite-air-ground-ocean optical wireless communication[J]. Progress in Quantum Electronics, 2020, 74: 100300. doi: 10.1016/j.pquantelec.2020.100300 [2] ENHOS K, DEMIRORS E, UNAL D, et al. Software-defined visible light networking for bi-directional wireless communication across the air-water interface[C]//18th Annual IEEE International Conference on Sensing, Communication, and Networking(SECON). Rome, Italy: IEEE, 2021: 1-9. [3] CARVER C J, TIAN Z, ZHANG H, et al. Amphilight: Direct air-water communication with laser light[J]. GetMobile: Mobile Computing and Communications, 2021, 24(3): 26-29. doi: 10.1145/3447853.3447862 [4] LUO H, XIE X, HAN G, et al. Multimodal acoustic-RF adaptive routing protocols for underwater wireless sensor networks[J]. IEEE Access, 2019, 7: 134954-134967. doi: 10.1109/ACCESS.2019.2942060 [5] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 信息通信技术与政策, 2021(10): 63-67.SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021(10): 63-67. [6] 李壮, 孔军, 刘鹏, 等. 水下智能跨域异构网络设计[J]. 舰船科学技术, 2020, 42(23): 137-140.LI Z, KONG J, LIU P, et al. Design of underwater intelligent cross domain heterogeneous network[J]. Ship Science and Technology, 2020, 42(23): 137-140. [7] GUO H, LI J, LIU J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24(1): 53-87. [8] QIU T, CHEN N, LI K, et al. Heterogeneous ad hoc networks: architectures, advances and challenges[J]. Ad Hoc Networks, 2017, 55: 143-152. doi: 10.1016/j.adhoc.2016.11.001 [9] 罗汉江, 卜凡峰, 王京龙, 等. 海洋物联网水面及水下多模通信技术研究进展[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 79-90.LUO H J, BU F F, WANG J L, et al. Research progress of surface and underwater multimodal communication technology of marine internet of things[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1): 79-90. [10] LUO H, WANG J, BU F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600 [11] CHEN L K, SHAO Y, DI Y. Underwater and water-air optical wireless communication[J]. Journal of Lightwave Technology, 2022, 40(5): 1440-1452. doi: 10.1109/JLT.2021.3125140 [12] ZHU S, CHEN X, LIU X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274. doi: 10.1016/j.pquantelec.2020.100274 [13] JI Z, FU Y, LI J, et al. Photoacoustic communication from the air to underwater based on low-cost passive relays[J]. IEEE Communications Magazine, 2021, 59(1): 140-143. doi: 10.1109/MCOM.001.2000607 [14] QU F, QIAN J, WANG J, et al. Cross-medium communication combining acoustic wave and millimeter wave: Theoretical channel model and experiments[J]. IEEE Journal of Oceanic Engineering, 2021, 47(2): 483-492. [15] WANG H, YANG K, ZHENG K, et al. Experimental investigation on electromagnetic wave propagation across sea-to-air interface[C]//2014 Oceans. Taipei: IEEE, 2014: 1-6. [16] WATSON M C, BOUSQUET J F, FORGET A. Evaluating the feasibility of magnetic induction to cross the air-water boundary[C]//2021 Fifth Underwater Communications and Networking Conference(UComms). Lerici, Italy: IEEE, 2021: 1-4. [17] PAL A, KANT K. NFMI: Near field magnetic induction based communication[J]. Computer Networks, 2020, 181(9): 107548. [18] 李从改, 刘锋, 徐涴砯, 等. 智能水下应急通信一体化探讨[J]. 数字海洋与水下攻防, 2022, 5(4): 285-292.LI C G, LIU F, XU W P, et al. Discussion on integration of intelligent underwater emergency communication[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 285-292. [19] LIU J, DU X, CUI J, et al. Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345-5358. doi: 10.1109/JIOT.2020.2977402 [20] WANG B, ZHANG H, ZHU Y, et al. Adaptive power-controlled depth-based routing protocol for underwater wireless sensor networks[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1567. doi: 10.3390/jmse11081567 [21] WANG Q, DAI H N, WANG Q, et al. On connectivity of UAV-assisted data acquisition for underwater internet of things[J]. IEEE Internet of Things Journal, 2020, 7(6): 5371-5385. doi: 10.1109/JIOT.2020.2979691 [22] PERRONE L F, HENDERSON T R, WATROUS M, et al. The design of an output data collection framework for NS-3[C]//The conference theme for WSC’13 is Simulation: Making Decisions in a Complex World. Washington, D.C., USA: IEEE, 2013: 2984-2995. [23] YAN H, SHI Z J, CUI J H. DBR: Depth-based routing for underwater sensor networks[C]//networking 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet: 7th International IFIP-TC6 Networking Conference. Singapore: IFIP Networking Conference, 2008: 72-86. [24] WAHID A, LEE S, JEONG H J, et al. EEDBER: Energy-efficient depth-based routing protocol for underwater wireless sensor networks[J]. Advanced Computer Science and Information Technology, 2011, 195: 223-234. [25] WANG Z, HAN G, QIN H, et al. An energy-aware and void-avoidable routing protocol for underwater sensor networks[J]. IEEE Access, 2018, 6: 7792-7801. doi: 10.1109/ACCESS.2018.2805804 [26] MARTIN R, ZHU Y, PU L, et al. Aqua-sim next generation: A NS-3 based simulator for underwater sensor networks[C]//Proceedings of the 10th International Conference on Underwater Networks & Systems. Washington, D.C., USA: Association for Computing Machinery, 2015: 1-2.