• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DoS攻击下基于水声传感器网络的目标追踪算法

闫敬 杨锦 杨晛 罗小元

闫敬, 杨锦, 杨晛, 等. DoS攻击下基于水声传感器网络的目标追踪算法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0006
引用本文: 闫敬, 杨锦, 杨晛, 等. DoS攻击下基于水声传感器网络的目标追踪算法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0006
YAN Jing, YANG Jin, YANG Xian, LUO Xiaoyuan. Underwater Target Tracking Algorithm for Underwater Acoustic Sensor Networks under DoS Attack[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0006
Citation: YAN Jing, YANG Jin, YANG Xian, LUO Xiaoyuan. Underwater Target Tracking Algorithm for Underwater Acoustic Sensor Networks under DoS Attack[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0006

DoS攻击下基于水声传感器网络的目标追踪算法

doi: 10.11993/j.issn.2096-3920.2024-0006
基金项目: 国家自然科学基金(62222314), 河北省自然科学基金(F2024203047,F2022203001, F2024203072), 中央引导地方基金(226Z3201G).
详细信息
    作者简介:

    闫敬:闫 敬, 燕山大学电气工程学院教授, 主要研究方向为水声传感网络, 水下机器人协同控制

  • 中图分类号: TN929.3; U675.7

Underwater Target Tracking Algorithm for Underwater Acoustic Sensor Networks under DoS Attack

  • 摘要: 考虑水下拒绝服务(DoS)攻击和声线分层效应的影响, 研究了基于水声传感器网络的目标追踪问题。首先考虑由水下传感器、水面浮标和水下目标组成的传感器网络架构。基于此, 构造了水下目标运动模型和水下拒绝服务攻击模型, 提出了一种改进的一致性无迹卡尔曼滤波水下目标追踪算法。进一步, 证明了追踪算法的收敛性, 推导了算法的克拉美罗下界。仿真和实验结果表明, 文中算法可以在水下环境有效进行目标追踪。

     

  • 图  1  水声传感器网络架构

    Figure  1.  The Architecture of Underwater Acoustic Sensor Networks

    图  2  DoS攻击示意图

    Figure  2.  Schematic Diagram of DoS Attacks

    图  3  声线弯曲示意图

    Figure  3.  Schematic diagram of sound line bending

    图  4  基于一致性UKF的 水下目标追踪算法

    Figure  4.  Underwater target tracking algorithm based on consistent UKF

    图  5  水声传感器节点部署

    Figure  5.  Underwater Sensor Nodes Deployment

    图  6  无攻击时的定位

    Figure  6.  Localization under No Attacks

    图  7  定位误差和CRLB

    Figure  7.  Errors and CRLB of Localization

    图  8  DoS攻击下的定位

    Figure  8.  Localization under DoS Attacks

    图  9  DoS攻击下的水下目标追踪

    Figure  9.  Underwater Target Tracking under DoS Attacks

    图  10  实验平台

    Figure  10.  Experimental platform

    图  11  实验结果

    Figure  11.  Results of the Experiment

    图  12  实验误差

    Figure  12.  Error of the Experiment

    表  1  文中方法与已有研究的对比

    Table  1.   Comparison of the proposed method and the other existing literatures’

    文献DoS攻击声线弯曲定位
    [8][9]×××
    [4][11][12][13][15]××
    [10]×
    [14]×
    [16]××
    文中方法
    下载: 导出CSV

    表  2  参数列表

    Table  2.   Parameters of Simulation

    名称参数
    $ {x_0} $[0 65 −50 5 5 0]
    s/m3200×200×100
    $ \lambda ${1,0,1,1,1,0,0,0,1,0,1,0}
    f/Hz21 000~27 000
    v/(bit/s)300
    $ {k^*} $/s90
    下载: 导出CSV
  • [1] GOLA K K, ARYA S. Underwater acoustic sensor networks: Taxonomy on applications, architectures, localization methods, deployment techniques, routing techniques, and threats: A systematic review[J]. Concurrency and Computation: Practice and Experience, 2023, 35(23): 1-37.
    [2] ELIYEH M, RAZE J, MOHAMMAD J D, et al. A robust method for underwater wireless sensor joint localization and synchronization[J], Ocean Engineering, 2017, 137: 276-286.
    [3] 孙海信, 何崇林, 王俊峰. 水下无线传感器网络抗恶意干扰技术应用及研究进展[J]. 水下无人系统学报, 2023, 31(1): 128-142. doi: 10.11993/j.issn.2096-3920.2022-0090

    SUN H X, HE CL, WANG J F, et al. Anti-malicious interference technology for underwater wireless sensor networks: Applications and recent advances[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 128-142. doi: 10.11993/j.issn.2096-3920.2022-0090
    [4] WEN L, YU S, ZHAO Y, et al. Event-based secure consensus of multiple AUVs under DoS attacks[J]. Nonlinear Dynamics, 2022, 107(3): 2407-2419. doi: 10.1007/s11071-021-07113-8
    [5] AMJAD A, MOHAMMAD A K, ABDULLCH A, et al. Securing low-power blockchain-enabled IoT devices against energy depletion attack[J]. ACM Transactions on Internet Technology, 2023, 23(3): 1-17.
    [6] GOPE P, LEE J, QUEK T Q S. Resilience of DoS attacks in designing anonymous user authentication protocol for wireless sensor networks[J]. IEEE Sensors journal, 2016, 17(2): 498-503.
    [7] JISA D, CIZA T. Efficient DDoS flood attack detection using dynamic thresholding on flow-based network traffic[J]. Computers & Security, 2019, 82: 284-295.
    [8] OLAKANMI O O, DADA A. Wireless sensor networks (WSNs): Security and privacy issues and solutions[J]. Wireless mesh networks-security, architectures and protocols, 2020, 13: 1-16.
    [9] BOUBICHE D E, ATHMANI S, BOUBICHE S, et al. Cybersecurity issues in wireless sensor networks: Current challenges and solutions[J]. Wireless Personal Communications, 2021, 117: 177-213. doi: 10.1007/s11277-020-07213-5
    [10] GEBREYESUS G G. Localization and detection of multiple attacks in wireless sensor networks using artificial neural network[EB/OL]. (2023-01-10)[2023-12-23]. https://onlinelibrary.wiley.com/doi/full/10.1155/2023/2744706.
    [11] CREMERS C, RASMUSSEN K B, SCHMIDT B, et al. Distance hijacking attacks on distance bounding protocols[C]//2012 IEEE symposium on security and privacy. California, America: IEEE, 2012: 113-127.
    [12] DJURAEV S, CHOI J G, SOHN K S, et al. Channel hopping scheme to mitigate jamming attacks in wireless LANs[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1): 1-12. doi: 10.1186/s13638-016-0795-x
    [13] TAN Z, JAMDAGNI A, HE X, et al. A system for denial-of-service attack detection based on multivariate correlation analysis[J]. IEEE transactions on parallel and distributed systems, 2013, 25(2): 447-456.
    [14] YAN J, MENG Y, LUO X, et al. To hide private position information in localization for internet of underwater things[J]. IEEE Internet of Things Journal, 2021, 8(18): 14338-54. doi: 10.1109/JIOT.2021.3068298
    [15] OLFATI S, SHAMMA J. Consensus filters for sensor networks and distributed sensor fusion[C]//IEEE Conference on Decision & Control. Seville, Spain: IEEE, 2005: 6698-703.
    [16] 闫敬, 陈天明, 关新平, 等. 自主水下航行器协同控制研究现状与发展趋势[J]. 水下无人系统学报, 2023, 31(1): 108-120. doi: 10.11993/j.issn.2096-3920.2022-0096

    YAN J, CHEN T M, GUAN X P, et al. Autonomous undersea vehicle cooperative control: Current research status and development trends[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 108-120. doi: 10.11993/j.issn.2096-3920.2022-0096
    [17] DAI P, YU W, WANG H, et al. Distributed reinforcement learning for cyber-physical system with multiple remote state estimation under DoS attacker[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 3212-22. doi: 10.1109/TNSE.2020.3018871
    [18] JULIER S J, UHLMANN J K. New extension of the Kalman filter to nonlinear systems[J]. Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, 3068: 182-193. doi: 10.1117/12.280797
    [19] YAN J, ZHAO H, LUO X, et al. Asynchronous localization of underwater target using consensus-based unscented Kalman filtering[J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1466-1481.
    [20] LEFEBVRE T, BRUYNINCKX H, DE SCHULLER J. Comment on“a new method for the nonlinear transformation of means and covariances in filters and estimators”[with authors’ reply][J]. IEEE transactions on automatic control, 2002, 47(8): 1406-1409. doi: 10.1109/TAC.2002.800742
    [21] YU Y, LIANG Y. Multisensor-multitarget tracking based on belief propagation against false data injection attacks and denial of service attacks[J]. Digital Signal Processing, 2022, 126: 1-12.
    [22] LIU B, TANGY X, THARMARASA R, et al. Underwater target tracking in uncertain multipath ocean environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4899-915. doi: 10.1109/TAES.2020.3003703
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-03-31
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-10-28

目录

    /

    返回文章
    返回
    服务号
    订阅号