Development Status and Trend of U.S. Equipment for Underwater Special Operations
-
摘要: 近年来, 随着以美国为首的西方国家将战略重点由远洋转向近海, 近海的浅水水域成为各国的攻防重点, 配合着有人与无人协同的分布式作战背景, 水下特种作战平台开始扮演愈发重要的角色。文中以美国2024财年最新国防科研和采购预算为基础, 重点论述了水下系统项目中湿式蛙人输送艇、干式蛙人输送艇、干式甲板换乘仓、作战潜水装备、水下舟艇任务装备及小型无人水下航行器等水下特战装备的发展现状和研究趋势, 旨在为今后的水下特种装备研究提供有益参考。Abstract: In recent years, as the western countries led by the United States have shifted their strategic focus from ocean to offshore, offshore shallow waters have become the focus of attack and defense for countries. With the distributed combat background of manned and unmanned cooperation, underwater special operation platforms have begun to play an increasingly important role. This article was based on the latest national defense research and procurement budget for the US fiscal year 2024 and focused on the development status and research trends of equipment for underwater special operations such as swimmer delivery vehicle(SDV), dry combat submersible(DCS), dry deck shelter(DDS), combat diving (CBDIV), undersea craft mission equipment(UCME), and small undersea unmanned vehicle(SUUV)in underwater system projects, so as to provide useful references for future research on underwater special equipment.
-
表 1 2022—2024财年美军水下特战项目科研经费预算表
Table 1. Budget table for research funds of US underwater special operations projects during the first year 2022—2024
单位: 万美元 项目 2022年 2023年 2024年 水下系统项目 4299.7 8830.9 12467.2 水面舰艇项目 1734.8 2433.6 3355.9 现总统总预算 6034.5 11264.5 15823.1 前总统总预算 6263.0 8264.5 13673.1 总调整额 −228.5 3000.0 2150.0 表 2 2022—2024财年美军水下系统项目科研经费预算详细表
Table 2. Detailed budget table for research funds of US underwater systems projects during the first year 2022—2024
单位: 万美元 项目 2022年 2023年 2024年 SDV 320.4 107.0 109.2 DCS 620.9 434.9 379.4 DDS 140.5 308.1 1242.3 CBDIV 290.5 324.9 461.7 UCME 1648.5 1271.1 1756.7 SUUV 92.9 — — CCL — — 226.7 机密项目
(含国会补充)1186.0 6384.9 8291.2 合计 4299.7 8830.9 12467.2 表 3 2022—2024财年美军水下系统项目采购经费预算详细表
Table 3. Detailed budget table for the procurement of US underwater systems projects during the fiscal years
单位: 万美元 项目 2022年 2023年 2024年 SDV 526.9 1241.4 1263.5 DCS 424.4 1421.7 2469.9 DDS 1043.8 673.5 798.6 CBDIV 837.6 1752.0 1440.3 SUUV — 174.5 638.8 合计 2832.7 5263.1 6611.1 -
[1] United States Special Operations Command. Department of Defense Fiscal Year(FY) 2022 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2022/FY2022_p1.pdf. (2021-05-01) [2023-08-06]. [2] United States Special Operations Command. Department of Defense Fiscal Year(FY) 2023 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2023/FY2023_p1.pdf. (2022-05-01) [2023-08-06]. [3] United States Special Operations Command. Department of Defense Fiscal Year(FY) 2024 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2024/FY2024_p1.pdf. (2023-03-09) [2023-08-06]. [4] 朱兆彤, 陈自立, 赵琪. 基于财年预算的美国蛙人特战装备发展现状及动向分析[J]. 水下无人系统学报, 2022, 30(6): 696-703. doi: 10.11993/j.issn.2096-3920.2022-0051ZHU Z T, CHEN Z L, ZHAO Q. The development status and trend analysis of American diver special operation equipment based on its fiscal year defense budget[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 696-703. doi: 10.11993/j.issn.2096-3920.2022-0051 [5] 付学志, 石建飞, 江源. 蛙人水下作战系统装备发展现状及趋势[J]. 电声技术, 2019, 43(12): 11-17.FU X Z, SHI J F, JIANG Y. Development status and trends of frogman underwater warfare system equipment[J]. Electroacoustic Technology, 2019, 43(12): 11-17. [6] 周超, 钟宏伟, 陈迎亮, 等. 国外蛙人水下输送平台技术发展综述[J]. 水下无人系统学报, 2022, 30(6): 680-695. doi: 10.11993/j.issn.2096-3920.2022-0027ZHOU C, ZHONG H W, CHEN Y L, et al. Review of the development of frogman underwater transport platform technology abroad[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 680-695. doi: 10.11993/j.issn.2096-3920.2022-0027 [7] 李经. 水下无人作战系统装备现状及发展趋势[J]. 舰船科学技术, 2017, 39(1): 1-5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001LI J. Current status and development trends of underwater unmanned combat system equipment[J]. Ship Science and Technology, 2017, 39(1): 1-5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001 [8] 滕俊, 郭万海, 刘冬利. 国外海军水下特种作战研究[J]. 舰船电子对抗, 2012, 35(4): 39-42. doi: 10.3969/j.issn.1673-9167.2012.04.011TENG J, GUO W H, LIU D L. Research on foreign naval underwater special operations[J]. Ship Electronic Countermeasures, 2012, 35(4): 39-42. doi: 10.3969/j.issn.1673-9167.2012.04.011 [9] 周超, 王庆胜, 李卓禹. 外军水下特种作战装备体系研究[J]. 数字海洋与水下攻防, 2020, 3(1): 52-57.ZHOU C, WANG Q S, LI Z Y. Research on foreign army’s underwater special operations equipment system[J]. Digital Ocean and Underwater Attack and Defense, 2020, 3(1): 52-57. [10] 王金成, 郭星香, 孙玉臣, 等. 反蛙人武器系统发展综述[J]. 数字海洋与水下攻防, 2020, 3(6): 486-493.WANG J C, GUO X X, SUN Y C, et al. Overview of the development of anti frogman weapon systems[J]. Digital Ocean and Underwater Attack and Defense, 2020, 3(6): 486-493. [11] LEI Y, ZHAO S Y, WANG X X, et al. Deep-sea underwater cooperative operation of manned/unmanned submersible and surface vehicles for different application scenarios[J]. Journal of Marine Science and Engineering, 2022, 10(7): 909-931. [12] 闵瑞红, 郭燕舞. 美国海军“海豹”特种作战部队投放系统[J]. 舰船科学技术, 2012, 34(1): 138-143.MIN R H, GUO Y W. US Navy“Seal”special operations force delivery system[J]. Ship Science and Technology, 2012, 34(1): 138-143. [13] SUTTON H I. US Navy Seals next generation SDV MK. XI(SWCS) [EB/OL]. (2015-10-6) [2022-7-29]. http://www.hisutton.com/US%20Navy%20SEALs%20next%20generation%20SDV%20Mk.XI%20(SWCS).html. [14] JACOBS K. Advanced swimmer delivery system (ASDS) of the U. S. Navy[J]. Naval Forces, 2003(3): 107-109. [15] SUTTON H I. SEALs + USSOCOM next generation sub UOES3[EB/OL]. (2015-6-23) [2022-7-29]. http://www.hisuton.com/SEALs%20+%20USSOCOM%20next%20generation%20sub%20UOES3.html. [16] 倪先胜, 梁来雨, 刘俊, 等. 国外潜艇特种作战模式及趋势分析[J]. 舰船科学技术, 2021, 43(9): 185-189.NI X S, LIANG L Y, LIU J, et al. The mode and trend analysis for special operation on submarine[J]. Ship Science and Technology, 2021, 43(9): 185-189. [17] 顾靖华, 方以群, 柳初萌, 等. 蛙人循环式潜水呼吸器的特点及发展趋势[J]. 海军医学杂志, 2020, 41(2): 232-235.GU J H, FANG Y Q, LIU C M, et al. The characteristics and development trends of frogman recirculating diving respirators[J]. Journal of Naval Medicine, 2020, 41(2): 232-235. [18] 周英杰, 张坤, 衣洪杰, 等. 大动物氦氧模拟潜水舱内微环境的控制[J]. 军事医学, 2022, 46(1): 34-36.ZHOU Y J, ZHANG K, YI H J, et al. Control of the microenvironment in large animal helium oxygen simulated diving cabins[J]. Military Medicine, 2022, 46(1): 34-36. [19] CHEN L, HU D, HAN X. Study on forearm swing recognition algorithms to drive the underwater power-assisted device of frogman[J]. Journal of Field Robotics, 2022, 39(1): 14-27. doi: 10.1002/rob.22035 [20] HEO J, KIM J, KWON Y. Technology development of unmanned underwater vehicles(UUVs)[J]. Journal of Computer and Communications, 2017, 5(7): 28-35. doi: 10.4236/jcc.2017.57003 [21] 刘洋, 陈练, 苏强, 等. 水下无人航行器装备技术发展与作战应用研究[J]. 舰船科学技术, 2020, 42(12): 1-7.LIU Y, CHEN L, SU Q, et al. Research on the development and operational application of underwater unmanned vehicle equipment technology[J]. Ship Science and Technology, 2020, 42(12): 1-7. [22] DUBYOSKI J M. Asymmetric influence of single propeller UUV operations on entanglement with marine vegetation[D]. Monterey: Naval Postgraduate School, 2022. [23] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.SONG B W, PAN G, ZHANG L C, et al. Development trends and key technologies of autonomous underwater vehicles[J]. China Shipbuilding Research, 2022, 17(5): 27-44.