• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图诱导对齐的域自适应水下目标检测方法

刘麒东 沈鑫 刘海路 丛璐 付先平

刘麒东, 沈鑫, 刘海路, 等. 基于图诱导对齐的域自适应水下目标检测方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0149
引用本文: 刘麒东, 沈鑫, 刘海路, 等. 基于图诱导对齐的域自适应水下目标检测方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0149
LIU Qidong, SHEN Xin, LIU Hailu, CONG Lu, FU Xianping. GPA based domain adaptive feature refinement method for underwater target detection[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0149
Citation: LIU Qidong, SHEN Xin, LIU Hailu, CONG Lu, FU Xianping. GPA based domain adaptive feature refinement method for underwater target detection[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0149

基于图诱导对齐的域自适应水下目标检测方法

doi: 10.11993/j.issn.2096-3920.2023-0149
详细信息
    作者简介:

    刘麒东(2000-),男,在读硕士,主要研究方向为目标检测

  • 中图分类号: TP391.41

GPA based domain adaptive feature refinement method for underwater target detection

  • 摘要: 水下环境因受到光照、泥沙等影响, 在水下进行目标检测时通常更容易出现域偏移而导致检测精度下降。针对此现象, 文中提出了基于图诱导对齐的域自适应水下目标检测方法, 图诱导原型对齐(GPA)是通过区域建议之间基于图的信息传播得到图像中的实例级特征, 再导出每个类别的原型表示用于类别级域的对齐。通过上述操作可以很好地聚合水下目标不同的模态信息, 以此实现源域和目标域的对齐从而减少域偏移带来的影响。此外, 为了使神经网络专注于不同水域分布下的实例级特征, 还在其中添加了卷积块注意(CBAM)模块。实验结果证明, 水下环境中GPA能有效对齐源域和目标域中的实例特征, CBAM可以使网络更加注意图像中的实例特征, 提高检测精度。

     

  • 图  1  水下图像的域偏移现象

    Figure  1.  Domain shift phenomenon in underwater images

    图  2  GPA检测框架

    Figure  2.  GPA testing framework

    图  3  SEM结构

    Figure  3.  SEM structure

    图  4  DRAW结构

    Figure  4.  DRAW structural diagram

    图  5  CBAM概述

    Figure  5.  Overview of CBAM

    图  6  礁石地形注意力可视化

    Figure  6.  Reef terrain attention visualization

    图  7  沙石地形注意力可视化

    Figure  7.  Sand and stone terrain visualization attention

    图  8  实验检测结果

    Figure  8.  Experimental detection result

    表  1  水下数据集URPC2020->HMRD实验结果(%)

    Table  1.   Underwater dataset URPC2020->HMRD experimental results(%)

    方法海参海胆海星平均精度
    基线41.762.347.450.3
    GPA方法48.167.954.756.9
    DA方法49.268.158.658.6
    本方法52.069.760.160.6
    下载: 导出CSV

    表  2  公共数据集VOC12->VOC07实验结果(%)

    Table  2.   Public dataset VOC12->VOC07 experimental results(%)

    方法自行车轿车沙发火车平均精度
    基线73.769.372.177.280.076.260.188.374.6
    GPA方法76.068.174.275.384.277.861.885.975.4
    DA方法77.075.082.179.383.376.071.477.677.7
    本方法74.568.674.677.183.477.663.588.576.0
    下载: 导出CSV

    表  3  公共数据集sim10K->cityscapes实验结果(%)

    Table  3.   Public dataset sim10K->Cityscapes experimental results(%)

    方法精度
    基线34.9
    GPA方法46.1
    DA方法45.8
    本方法48.3
    下载: 导出CSV
  • [1] 邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.

    Qiu Zhiming, Ma Yan, Meng Xiangyao, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [2] 郝紫霄, 王琦. 基于声呐图像的水下目标检测研究综述[J]. 水下无人系统学报, 2023, 31(2): 339-348.

    Hao Zixiao, Wang Qi. Underwater target detection based on sonar image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348.
    [3] 孙杰, 王红萍, 张丹, 等. 不同颜色照明下的水下成像差异研究[J]. 水下无人系统学报, 2023, 31(4): 648-653.

    Sun Jie, Wang Hongping, Zhang Dan, et al. Difference between underwater imaging with illumination sources with different colors[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 648-653.
    [4] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, ECCV, 2016: 21-37.
    [5] He K M, Zhang X, Ren S, et al. Deep residual learning for image recognition[J/OL] ArXiv Preprint(2015-12-10). https://arxiv.org/abs/1512.03385.
    [6] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[J/OL]ArXiv Preprint(2016-12-25). https://arxiv.org/abs/1612.08242.
    [7] Khodabandeh M, Vahdat A, Ranjbar M, et al. A robust learning approach to domain adaptive object detection[C]//IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), IEEE, 2019: 480-490.
    [8] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, IEEE, 2016: 779-788.
    [9] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, IEEE, 2014: 580-587.
    [10] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [11] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, IEEE, 2017: 936-944.
    [12] Gkioxari G , He K , Piotr Dollár, et al. Mask R-CNN[P]. 2017[2024-01-19].
    [13] 罗逸豪, 刘奇佩, 张吟等. 基于深度学习的水下图像目标检测综述[J]. 电子与信息学报, 2023, 45(10): 3468-3482. doi: 10.11999/JEIT221402

    Luo Yihao, Liu Qipei, Zhang Yin, et al. A review of underwater image object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2023, 45(10): 3468-3482. doi: 10.11999/JEIT221402
    [14] 姚文清, 李盛, 王元阳. 基于深度学习的目标检测算法综述[J]科技资讯, 2023, 21(16): 185-188.

    Yao Wenqing, Li Sheng, Wang Yuanyang. Overview of deep learning based object detection algorithms [J] Science and Technology Information, 2023, 21 (16): 185-188
    [15] Sun B, Saenko K. Deep coral: Correlation alignment for deep domain adaptation[C]//Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, ECCV, 2016: 443-450.
    [16] Girshick R. Fast R-CNN[P]. 2015[2024-01-19].
    [17] Xu M, Wang H, Ni B, et al. Cross-domain detection via graph-induced prototype alignment[C]2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, IEEE, 2020, 12352-12361.
    [18] Vidit V, Engilberge M, Salzmann M. CLIP the Gap: A single domain generalization approach for object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, IEEE, 2023: 3219-3229.
    [19] Vibashan V S, Oza P, Patel V M. Instance relation graph guided source-free domain adaptive object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, IEEE, 2023: 3520-3530.
    [20] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[M]//Computer vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
    [21] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel at-tention for deep convolutional neural net-works[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, IEEE, 2020: 11531-11539.
    [22] Liu J, Ni B, Li C, et al. Dynamic points agglomeration for hierarchical point sets learning[C]//2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), IEEE, 2019: 7545-7554.
    [23] Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Re-search, 2012, 13(1): 723-773.
    [24] Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance[J/OL]. ArXiv Preprint(2014-12-10), https://arxiv.org/abs/1412.3474v1.
    [25] Sankaranarayanan S, Balaji Y, Castillo C D, et al. Generate to adapt: Aligning domains using generative adversarial net-works[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, IEEE, 2018: 8503-8512.
    [26] Xu M, Zhang J, Ni B, et al. Adversarial domain adaptation with domain mixup[C]//2020 AAAI conference on Technical Track: Machine Learning, New York, USA, AAAI, 2020: 6502-6509.
    [27] Xie S, Zheng Z, Chen L, et al. Learning semantic representa-tions for unsupervised domain adaptation[C]//International conference on machine learning, Stockholm, Sweden, ICML, 2018: 5423-5432.
    [28] Chen C, Xie W, Huang W, et al. Progressive feature alignment for unsupervised domain adaptation[J/OL]ArXiv Preprint(2019-5-19) http://export.arxiv.org/abs/1811.08585.
    [29] Pan Y, Yao T, Li Y, et al. Transferrable prototypical networks for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2239-2247.
    [30] Hu J, Shen L, Sun G. Squeeze-and-excitation net-works[C]//Proceedings of the IEEE conferenceoncomputer vision and pattern recognition. 2018: 7132-7141.
    [31] Zhang H, Zu K, Lu J, et al. EPSANet: An efficient pyramid squeeze attention blockon convolutional neural network[J]. IEEE Access, 2021, 9: 16793-16802.
    [32] Qin Z, Zhang P, Wu F, et al. Fcanet: Frequency channel attention networks[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 783-792.
    [33] Li X, Hu X, Yang J. Spatial group-wise enhance: Improving semantic feature learning in convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer VisionandPattern Recognition. IEEE, 2018: 1873-1882.
    [34] Liu Z, Wang L, Wu W, et al. TAM: Temporal adaptive module for video recognition[J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 14: 11337-11346.
    [35] Lin X, Guo Y A, Wang J. Global correlation network: End-to-end joint multi-object detection and track-ing[C]//Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition. 2020: 7060-7069.
    [36] Saito K, Ushiku Y, Harada T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 6956-6965.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  37
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 修回日期:  2024-01-01
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回
    服务号
    订阅号