• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的水下爆炸关键信号识别方法

周稹先 洪峰 许伟杰 张涛 陈峰

周稹先, 洪峰, 许伟杰, 等. 基于深度学习的水下爆炸关键信号识别方法[J]. 水下无人系统学报, 2024, 32(4): 739-748 doi: 10.11993/j.issn.2096-3920.2023-0146
引用本文: 周稹先, 洪峰, 许伟杰, 等. 基于深度学习的水下爆炸关键信号识别方法[J]. 水下无人系统学报, 2024, 32(4): 739-748 doi: 10.11993/j.issn.2096-3920.2023-0146
ZHOU Zhenxian, HONG Feng, XU Weijie, ZHANG Tao, CHEN Feng. Deep Learning-Based Method for Key Signal Recognition during Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 739-748. doi: 10.11993/j.issn.2096-3920.2023-0146
Citation: ZHOU Zhenxian, HONG Feng, XU Weijie, ZHANG Tao, CHEN Feng. Deep Learning-Based Method for Key Signal Recognition during Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 739-748. doi: 10.11993/j.issn.2096-3920.2023-0146

基于深度学习的水下爆炸关键信号识别方法

doi: 10.11993/j.issn.2096-3920.2023-0146
详细信息
    作者简介:

    周稹先(1999-), 男, 在读硕士, 主要研究方向为水下爆炸信号处理

  • 中图分类号: TJ63; U674

Deep Learning-Based Method for Key Signal Recognition during Underwater Explosions

  • 摘要: 水下爆炸试验采集的数据量庞大并掺杂大量无用数据, 为保护数据不受爆炸的影响, 试验时需要优先将关键数据识别并存储。针对此, 文中提出一种将特征提取方法和深度学习模型相结合的关键信号识别模型, 以提升对关键信号识别的准确率。首先, 研究了不同预处理方法对水下爆炸加速度信号趋势项的去除效果, 并用已有试验结果证明小波包分解法、经验模态分解法和高通滤波法可较好地提升模型的识别性能; 其次, 为使提取的特征更有利于区分爆炸段与非爆炸段, 提出一种针对水下爆炸加速度信号的基于类间方差比的特征提取方法, 基于水下爆炸实测加速度信号数据可知, 相比于Log Mel特征, 文中提出的特征用K-means方法分类准确率提升约4.92%; 最后, 引入添加SE-Res2Block模块的ECAPA-TDNN模型, 该模型具有更好的识别准确率, 以文中提出的特征作为输入, 识别准确率达99.31%。

     

  • 图  1  水下爆炸加速度信号

    Figure  1.  Acceleration signal of underwater explosion

    图  2  水下爆炸实测加速度信号速度和位移时域图

    Figure  2.  Time domain of measured acceleration signal velocity and displacement of underwater explosion

    图  3  水下爆炸实测加速度信号频域冲击谱

    Figure  3.  Frequency domain impact spectrum of measured acceleration signal of underwater explosion

    图  4  Log Mel特征生成框图

    Figure  4.  The architecture of Log Mel feature

    图  5  关键信号识别整体框架

    Figure  5.  Overall framework of critical signal recognition

    图  6  水下爆炸数据集信号示例

    Figure  6.  Examples of signals in the dataset

    图  7  加噪20 dB后水下爆炸加速度信号

    Figure  7.  Underwater explosion acceleration signal after adding 20 dB noise

    图  8  50维Log Mel特征类间方差比得分

    Figure  8.  Score of 50-dimensional Log Mel feature's inter-class variance ratio

    图  9  改进前后三角滤波器组布放结果对比

    Figure  9.  Comparison of Filter Banks Before and After Improvement

    图  10  ECAPA-TDNN结构框图

    Figure  10.  The architecture of ECAPA-TDNN

    表  1  趋势项去除后加速度信号各评价指标对比

    Table  1.   Evaluation indicators of acceleration signal after trend item removal

    算法名称 5 000点均值 加速度峰值
    /V
    速度峰值
    /(V·s)
    位移峰值
    /(V·s2)
    速度起始
    /(V·s)
    速度结束
    /(V·s)
    位移起始
    /(V·s2)
    位移结束
    /(V·s2)
    EMD法 4.36×10−6 7.96×10−4 3.47×10−8 1.08×10−3 2.93×10−1 8.00×10−4 1.09×10−3
    高通滤波法 1.39×10−5 1.41×10−5 1.73×10−7 3.70×10−5 3.00×10−1 4.29×10−5 3.72×10−5
    WPD法 2.99×10−6 2.86×10−6 3.96×10−8 7.00×10−6 3.02×10−1 4.45×10−5 7.04×10−6
    多项式拟合法 −3.19×10−7 −1.05×10−5 −8.17×10−10 1.37×10−7 3.09×10−1 3.47×10−4 3.93×10−5
    无处理 3.50×10−4 7.20×10−2 2.92×10−6 9.43×10−2 2.81×10−1 7.24×10−2 9.52×10−1
    下载: 导出CSV

    表  2  2组实验数据在不同数据集的分布

    Table  2.   Distribution of two experimental data in different data sets

    数据集第1组第2组共计
    训练集6 40012 86419 264
    验证集1 6003 8204 820
    测试集1 0002 5723 572
    下载: 导出CSV

    表  3  实验所用不同模型参数对比

    Table  3.   Parameters of models

    模型 结构参数
    CNN Conv(Cin=1, Cout=4, k=5, s=2, p=1+ReLU+MaxPool(k=2, s=2))
    Conv(Cin=4, Cout=16, k=5, s=2, p=1+ReLU+MaxPool(k=2, s=2))
    Conv(Cin=16, Cout=32, k=3, s=2, p=1+ReLU+MaxPool(k=1, s=1))
    Conv(Cin=32, Cout=64, k=3, s=2, p=1+ReLU+MaxPool(k=1, s=1))
    Linear(64$ \times $32, 512)+ReLU+Linear(512, 32)+ReLU+Linear(32, 2)
    LSTM LSTM(input_dim=50, hidden_dim=128, layer_dim=4, output_dim=2)
    ResNet18 ResNet18[22](num_classes=2)
    ECAPA-TDNN ECAPA-TDNN[24](num_classes=2)
    下载: 导出CSV

    表  4  不同特征提取方法识别准确率对比

    Table  4.   Recognition accuracy comparison of different features extraction combination

    预处理方法准确率
    EMD法96.25%±0.05%
    多项式拟合法92.75%±1.54%
    高通滤波法96.34%±0.02%
    WPD法96.39%±0.05%
    无处理90.34%±1.22%
    下载: 导出CSV

    表  5  50维特征识别准确率

    Table  5.   Recognition accuracy of 50-dimensional features

    模型 准确率
    Log Mel特征 文中特征
    ECAPA-TDNN 97.28%±0.02% 99.31%±0.09%
    LSTM 96.45%±0.12% 97.83%±0.02%
    ResNet18 96.78%±0.02% 97.16%±0.10%
    CNN 96.39%±0.05% 96.40%±0.04%
    SVM 96.39%±0.07% 96.72%±0.01%
    KNN 96.50%±0.05% 96.56%±0.07%
    K-means 73.80%±2.49% 78.72%±1.02%
    下载: 导出CSV

    表  6  不同特征提取组合的识别准确率对比

    Table  6.   Recognition accuracy comparison of different features extraction combination

    特征+模型准确率
    一维频谱(2 048维)+CNN_1d93.75%±1.35%
    PSD(2 048维)+CNN_1d91.25%±2.24%
    WPDE(41×12维)+ECAPA-TDNN95.75%±0.35%
    文中特征(41×50维)+ECAPA-TDNN99.31%±0.09%
    下载: 导出CSV
  • [1] 刘建湖. 舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学研究中心, 2002.
    [2] CHUNG J, SEO Y Y, YOUNG S. Shin dynamic and whipping response of the surface ship subjected to underwater explosion: experiment and simulation[J]. Ships and Offshore Structures, 2020, 15(10): 1129-1140. doi: 10.1080/17445302.2019.1706924
    [3] JIN P, XU H L, WANG H C, et al. On the seismic source function of an underwater explosion[J]. Geophysical Journal International, 2023, 232(1): 485-503.
    [4] CHUNG J, SEO Y, SHIN Y S. Dynamic and whipping response of the surface ship subjected to underwater explosion: experiment and simulation[J]. Ships and Offshore Structures, 2019, 15(10): 1129-1140.
    [5] 杜志鹏, 张磊, 谌勇, 等. 泡沫覆盖层对水下爆炸气泡射流防护机理缩比试验研究[J]. 应用数学和力学, 2022, 43(5): 569-576.

    DU Z P, ZHANG L, CHEN Y, et al. Reduced-scale experiment study on the protective mechanism of foam coating against underwater explosion bubble jet[J]. Applied Mathematics and Mechanics, 2019, 43(5): 569-576.
    [6] 范志强, 马宏昊, 沈兆武, 等. 水下连续脉冲冲击波的声学特性[J]. 爆炸与冲击, 2013, 33(5): 501-506.

    FAN Z Q, MA H H, SHEN Z W, et al. Acoustic characteristics of underwater continuous pulse shock waves[J]. Explosion and Shock Waves, 2013, 33(5): 501-506.
    [7] REZAEE M, TARAGHI O A. Improving empirical mode decomposition for vibration signal analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part C. 2017, 231(12): 2223-2234.
    [8] 蒲坚, 崔硕, 黄丹, 等. 山岭隧道爆破振动信号小波包及能量分析[J]. 交通科技, 2018(2): 61-65.

    PU J, CUI S, HUANG D, et al. Wavelet packet and energy analysis of vibration signals in mountain tunnel blasting[J]. Journal of Traffic Science and Technology, 2018(2): 61-65.
    [9] ROGÉRIO T, WENDERSON N L, PAULO R A, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals[J]. Measurement, 2019, 145: 71-83. doi: 10.1016/j.measurement.2019.05.079
    [10] 李洪涛. 基于无线数据传输的水下爆炸压力遥测系统硬件设计与实现[D]. 长沙: 国防科学技术大学, 2002.
    [11] 贾振华, 王文廉. 瞬态压力测试系统中信号识别触发的设计与实现[J]. 火工品, 2016(1): 57-60.

    JIA Z H, WANG W L. Design and implementation of signal recognition trigger in transient pressure testing system[J]. Chinese Journal of Explosives & Propellants, 2016(1): 57-60.
    [12] PRIOR M K. An optimization approach to the automatic identification of signals originating from underwater explosions[J]. The Journal of the Acoustical Society of America, 2008, 123(5): 3900.
    [13] ZHA X, PENG H, QIN X, et al. A deep learning framework for signal detection and modulation classification[J]. Sensors, 2019, 19: 4042.
    [14] ZHONG M, MANUEL C, RAHUL D, et al. Beluga whale acoustic signal classification using deep learning neural network models[J]. J. Acoust. Soc. Am, 2020, 147(3): 1834-1841. doi: 10.1121/10.0000921
    [15] JÚLIO d C V F, NATANAEL N d M J, JOSÉ M d S. Deep learning models for passive sonar signal classification of military data[J]. Remote Sens, 2022, 14: 2648. doi: 10.3390/rs14112648
    [16] 王乾勋, 闫明, 杜志鹏, 等. 趋势项误差的低频极限特征理论模型与处理方法研究[J]. 振动与冲击, 2018, 37(12): 239-243.

    WANG Q X, YAN M, DU Z P, et al. Research on low-frequency limit characteristic theoretical model and processing method of trend item error[J]. Journal of Vibration and Shock, 2018, 37(12): 239-243.
    [17] 徐卓飞, 刘凯. 基于极值符号序列分析的EMD端点效应处理方法[J]. 振动、测试与诊断, 2015, 35(2): 309-315, 400.

    XU Z F, Liu K. Endpoint effect handling method for EMD based on extremum sign sequence analysis[J]. Vibration, Testing and Diagnosis, 2015, 35(2): 309-315, 400.
    [18] 董晨懿, 陈梦英, 许伟杰, 等. 一种改进的水下爆炸冲击波信号修正方法[J]. 声学技术, 2022, 41(3): 376-381.

    DONG C Y, CHEN M Y, XU W J, et al. An improved correction method for underwater explosion shock wave signals[J]. Acoustic Technology, 2022, 41(3): 376-381.
    [19] STEVENS S S, VOLKMANN J, NEWMAN E B. The mel scale equates the magnitude of perceived differences in pitch at different frequencies[J]. Journal of the Acoustical Society of America, 1937, 8(3): 185-190. doi: 10.1121/1.1915893
    [20] 伊鑫, 曲爱华. 基于Welch算法的经典功率谱估计的Matlab分析[J]. 现代电子技术, 2010, 33(3): 7-9.

    YI X, QU A H. Matlab analysis of classical power spectral density estimation based on welch algorithm[J]. Modern Electronic Technology, 2010, 33(3): 7-9.
    [21] 张志伟, 杨可林, 冯志常, 等. 基于小波包倒谱系数和ECAPA-TDNN的调度说话人确认研究[J]. 山东电力技术, 2023, 50(2): 52-57.

    ZHANG Z W, YANG K L, FENG Z C, et al. Research on speaker verification in power dispatching based on wavelet packet cepstral coefficient and ECAPA-TDNN[J]. Shandong Electric Power, 2023, 50(2): 52-57.
    [22] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
    [23] HU J, SHEN L, SUN G. Squeeze and excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City, UT, USA: IEEE, 2018: 7132-7141.
    [24] DESPLANQUES B, THIENPONDT J, DEMUYNCK K. ECAPA-TDNN: Emphasized channel attention, propagation and aggregation in TDNN based speaker verification[EB/OL]. (2020-05-15)[2023-10-10]. http://arxiv.org/abs/2005.07143v3.
    [25] 吴夙慧, 成颖, 郑彦宁, 等. K-means算法研究综述[J]. 现代图书情报技术, 2011(5): 28-35.

    WU S H, CHENG Y, ZHENG Y N, et al. A review of K-means algorithm research[J]. Modern Library and Information Technology, 2011(5): 28-35.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  18
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-12-27
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-08-06

目录

    /

    返回文章
    返回
    服务号
    订阅号