Analysis of Induced Current and Electromagnetic Safety of Bridge-Wire Electric Explosive Device
-
摘要: 基于电磁场基本理论对桥丝式电引爆火工品等效天线的形成及其能量转化过程进行理论分析, 利用CST软件对强电磁脉冲作用下火工品中感应电流的形成进行仿真建模, 并利用验证后的模型分析了入射波信号、火工品引线布置形式及桥丝电阻等因素对感应电流的影响。研究结果表明, 入射波强度、频率、入射方向以及火工品等效天线的感应接收面积是感应电流的主要决定因素; 桥丝电阻和感应电流共同决定了耦合到火工品中的感应能量, 从电磁安全性角度出发, 电火工品承受连续电磁脉冲作用时间不得超过178 μs。文中研究可为武器装备火工品安全防护提供参考。Abstract: Based on the basic theory of electromagnetic fields, the formation of the equivalent antenna of an electric explosive device(EED) and its energy conversion process were analyzed, and CST software was used to simulate and model the formation of induced current in the EED under the action of strong electromagnetic pulses. After validating the model, the influence of factors such as incident wave signal, lead wire layout, and bridge-wire resistance on the induced current was studied. According to the results, the strength, frequency, and the direction of incident wave, as well as the inductive receiving area of the equivalent antenna of the EED were major factors determining induced current. Bridge-wire resistance and induced current jointly determine the induced energy coupled to the EED. From the perspective of electromagnetic safety, the duration of continuous electromagnetic pulse action on EED shall not exceed 178 μs. The research content has certain reference significance for the safety protection of EEDs in weapon systems.
-
表 1 不同入射波方向对感应电流的影响
Table 1. The influence of incident wave directions on induced currents
α/(°) β/(°) 感应电流峰值/mA 0 90 80 30 60 70 45 45 56 60 30 35 90 0 0 -
[1] 刘伟, 李茜华, 陈曦, 等. 航天器火工品系统安全性试验研究[J]. 导弹与航天运载技术, 2017(2): 91-94, 102.LIU W, LI Q H, CHEN X, et al. Safety experiment of detonator system in integrated space vehicle[J]. Missiles and Space Vehicles, 2017(2): 91-94, 102. [2] 王殿湘, 张蕊, 纪向飞, 等. 核电磁脉冲辐射下电火工品的安全性分析[J]. 水下无人系统学报, 2017, 25(1): 59-64.WANG D X, ZHANG R, JI X F, et al. Safety analysis of EED in nuclear electromagnetic pulse radiation[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 59-64. [3] 张旭, 马志刚, 邱立军, 等. 舰载相控阵雷达对火工品安全影响[J]. 舰船电子工程, 2018, 38(6): 123-127. doi: 10.3969/j.issn.1672-9730.2018.06.032ZHANG X, MA Z G, QIU L J, et al. Effect of ship-borne phased array radar on safety of initiating explosive device[J]. Ship Electronic Engineering, 2018, 38(6): 123-127. doi: 10.3969/j.issn.1672-9730.2018.06.032 [4] 赵团, 张蕊, 姚洪志, 等. 射频电磁环境中火箭弹安全性评估[J]. 兵工学报, 2020, 41(s2): 299-304.ZHAO T, ZHANG R, YAO H Z, et al. Estimation on the safety of rocket projectile in RF electromagnetic environment[J]. Acta Armamentarii, 2020, 41(s2): 299-304. [5] 孟冬旭, 魏明, 胡小锋, 等. 电磁脉冲作用下电火工品感应电流仿真研究[J]. 安全与电磁兼容, 2022(2): 24-28. doi: 10.3969/j.issn.1005-9776.2022.02.003 [6] 蔡明娟, 曹兵, 汤仕平. 电磁辐射对电火工品桥丝电流的影响分析[C]//2009年全国微波毫米波会议论文集(下册). 北京: 电子工业出版社, 2009: 678-681. [7] 陈萌, 魏兵, 何欣波. 高空核爆电磁脉冲入射情形下航空母舰上鞭状天线耦合特性分析[J]. 中国舰船研究, 2023, 18(4): 20-27.CHEN M, WEI B, HE X B. Analysis of coupling characteristics of whip antenna on aircraft carrier under incident electromagnetic pulse of high-altitude nuclear electromagnetic pulse[J]. Chinese Journal of Ship Research, 2023, 18(4): 20-27. [8] 巩翰林, 姚兰玉, 张铁纯, 等. 直升机雷电间接效应及耦合机理仿真[J]. 中国舰船研究, 2023, 18(4): 77-83.GONG H L, YAO L Y, ZHANG T C, et al. Simulation of lightning indirect effects and coupling mechanism of helicopter[J]. Chinese Journal of Ship Research, 2023, 18(4): 77-83. [9] 郑生全, 蔡敬标, 阮兵, 等. 舰船装备强电磁环境防护技术综述[J]. 中国舰船研究, 2023, 18(4): 1-19.ZHENG S Q, CAI J B, RUAN B, et al. A review of strong electromagnetic environment protection technology for ship equipment[J]. Chinese Journal of Ship Research, 2023, 18(4): 1-19. [10] SONNEMANN F. Susceptibility of bridgewire EED(inert) against HPEM[C]//2007 International Conference on Electromagnetics in Advanced Applications. Turin, Italy: ICEAA, 2007: 756-759. [11] 马骏, 张瑞江, 高兴勇, 等. 典型桥丝式电火工品电磁耦合机理研究[J]. 兵器装备工程报, 2022, 43(2): 130-136.MA J, ZHANG R J, GAO X Y, et al. Study on electromagnetic coupling of typical bridge wire electro explosive device[J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 130-136. [12] Reale D V, Mankowski J, Dickens J. Susceptibility of electro-explosive devices to high pulsed electric fields[C]//2007 International Conference on Electromagnetics in Advanced Applications. San Diego, CA, USA: IPMHVC, 2012: 211-214. [13] 中央军委装备发展部. 系统电磁环境效应要求: GJB 1389B-2022[S]. 北京: 中央军委装备发展部, 2022. [14] 张炜, 陆健, 侯冬云. 电磁辐射与感应电流的关系[J]. 安全与电磁兼容, 2003(6): 52-54. doi: 10.3969/j.issn.1005-9776.2003.06.017ZHANG W, LU J, HOU D Y. Discuss the relationship between electromagnetic radiation and inductive current[J]. Safety & EMC, 2003(6): 52-54. doi: 10.3969/j.issn.1005-9776.2003.06.017