• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液态金属型摩擦纳米发电的水下仿生触须传感器研究

李原正 王天润 关堂镇 徐鹏 王昊 徐敏义

李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0125
引用本文: 李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0125
LI Yuanzheng, WANG Tianrun, GUAN Tangzhen, XU Peng, WANG Hao, XU Minyi. Research on Liquid metal-based Triboelectric Whisker Sensor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0125
Citation: LI Yuanzheng, WANG Tianrun, GUAN Tangzhen, XU Peng, WANG Hao, XU Minyi. Research on Liquid metal-based Triboelectric Whisker Sensor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0125

基于液态金属型摩擦纳米发电的水下仿生触须传感器研究

doi: 10.11993/j.issn.2096-3920.2023-0125
基金项目: 国家自然科学基金项目(52371345); 基础科研项目(JCKY2022410C011).
详细信息
    通讯作者:

    徐敏义(1984-), 男, 博士, 教授, 主要研究方向为海洋微纳能源与自驱动系统

  • 中图分类号: U666.74; TJ630

Research on Liquid metal-based Triboelectric Whisker Sensor

  • 摘要: 为了提升水下机器人的机动性和适应性, 增强其感知周围环境的能力是必要的。受动物触须的毛囊结构启发, 本文将液态金属与摩擦纳米发电机相结合, 提出了一种基于液态金属的摩擦电触须传感器(LTWS), 在浑浊度高、视距低的水环境中作为水下机器人光学与声学感知技术的补充, 提升水下机器人的信息感知能力。LTWS主要由碳纤维材料触须、硅胶囊套、触发器、记忆合金弹簧、传感单元、基座等组成, 碳纤维触须的细微偏转会驱动触发器靠近并挤压对应方向的传感单元, 进而产生电信号。LTWS的感知信号与触须横向位移呈线性关系, 灵敏度可达7.9 mV/mm。值得一提的是, 触碰频率对输出信号的影响较小。LTWS丰富了水下机器人的感知手段, 为实现海洋信息感知提供了新的思路。

     

  • 图  1  LTWS结构图(组装剖面)

    Figure  1.  Structure diagram of LTWS (profile)

    图  2  LTWS结构图(爆炸视图)

    Figure  2.  Structure diagram of LTWS (exploded view)

    图  3  LTWS传感单元内部结构

    Figure  3.  Internal sensor unit structure of LTWS

    图  4  LTWS传感单元工作原理图

    Figure  4.  Schematic diagram of sensor unit power generation of LTWS

    图  5  仿生触须力学模型示意图

    Figure  5.  Schematic diagram of the mechanical model of bionic tentacles

    图  6  传感单元摩擦层

    Figure  6.  Sensing unit triboelectricity layer

    图  7  LTWS输出特性测试实验台

    Figure  7.  The output characteristic test bench of LTWS

    图  8  在变触碰偏移幅度下的LTWS触碰参数定义

    Figure  8.  Definition of LTWS touch parameters under variable touch offset amplitude

    图  9  传感单元对触碰偏移幅度从10 mm到130 mm 的电压响应

    Figure  9.  The voltage response of sensing unit to the touch offset range from 10 mm to 130 mm

    图  10  传感单元的电压响应与触碰偏移幅度的拟合关系

    Figure  10.  The fitting relationship between the voltage response of sensing unit 1 and the touch offset amplitude

    图  11  在变触碰频率f下的LTWS触碰参数定义

    Figure  11.  Definition of LTWS touch parameters under variable touch frequency f

    图  12  传感单元在触碰频率从0.4 Hz到2.0 Hz时的电压响应

    Figure  12.  The voltage response of sensor unit 1 when the touch frequency from 0.4 Hz to 2.0 Hz

    图  13  传感单元在触碰频率从0.4~2.0 Hz时的转移电荷量

    Figure  13.  The amount of transferred charge of sensor unit 1 when the touch frequency is from 0.4 Hz to 2.0 Hz

  • [1] 许欣欣. 海洋监测技术发展现状研究及应用[J]. 中国战略新兴产业, 2018, 24(6): 180.
    [2] Balasuriya A, Ura T. Vision-based underwater cable detection and following using AUVs[C]//Oceans’02 MTS/IEEE. Biloxi, MI, USA: IEEE, 2002.
    [3] Zhou M, Bachmayer R, De Young B. Underwater acoustic-based navigation towards multi-vehicle operation and adaptive oceanographic sampling[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017.
    [4] 胡瀚文, 王猛, 程卫平, 等. 水下视觉SLAM的图像滤波除尘与特征增强算法[J]. 机器人, 2023, 45(2): 10. doi: 10.13973/j.cnki.robot.210406
    [5] Lythgoe J N, Hemmings C C. Polarized light and underwater vision[J]. Nature, 1967, 213(5079): 893-894. doi: 10.1038/213893a0
    [6] Kou S, Feng X, Bi Y, et al. High-resolution angle-Doppler imaging by sparse recovery of underwater acoustic signals[J]. Chinese Journal of Acoustics, 2020, 39(2): 133-150.
    [7] Muscolo G G, Cannata G. A novel tactile sensor for underwater applications: Limits and perspectives[C]//OCEANS 2015-Genova. IEEE, 2015: 1-7.
    [8] Xu P, Liu J, Liu X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]. npj Flexible Electronics, 2022, 6(1): 252-261.
    [9] Asadnia M, Kottapalli A G P, Miao J, et al. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150322. doi: 10.1098/rsif.2015.0322
    [10] Tan D, Wang Q, Song R, et al. Optical fiber based slide tactile sensor for underwater robots[J]. Journal of Marine Science and Application, 2008, 7(2): 122-126. doi: 10.1007/s11804-008-7055-3
    [11] 徐鹏, 刘建华, 谢广明, 等. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究[J]. 兵工自动化, 2022, 41(12): 20-24.
    [12] Wettels N, Parnandi A R, Moon J H, et al. Grip control using biomimetic tactile sensing systems[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(6): 718-723. doi: 10.1109/TMECH.2009.2032686
    [13] Iskarous M M, Thakor N V. E-skins: Biomimetic sensing and encoding for upper limb prostheses[J]. Proceedings of the IEEE, 2019, 107(10): 2052-2064. doi: 10.1109/JPROC.2019.2939369
    [14] Xin Y, Tian H, Guo C, et al. A biomimetic tactile sensing system based on polyvinylidene fluoride film[J]. Review of Scientific Instruments, 2016, 87(2): 025002-1-025002-9. doi: 10.1063/1.4941736
    [15] Göpel W. New materials and transducers for chemical sensors[J]. Sensors and Actuators B:Chemical, 1994, 18(1-3): 1-21. doi: 10.1016/0925-4005(94)87049-7
    [16] Chen H, Xu Y, Bai L, et al. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency[J]. Science China Information Sciences, 2018, 61(6): 78-86.
    [17] Yoo D, Lee S, Lee J W, et al. Reliable DC voltage generation based on the enhanced performance triboelectric nanogenerator fabricated by nanoimprinting-poling process and an optimized high efficiency integrated circuit[J]. Nano Energy, 2020, 69: 104388. doi: 10.1016/j.nanoen.2019.104388
    [18] Dharmasena R, Silva S R P. Towards optimized triboelectric nanogenerators[J]. Nano Energy, 2019, 62: 530-549. doi: 10.1016/j.nanoen.2019.05.057
    [19] Dickey M D, Chiechi R C, Larsen R J, et al. Eutectic gallium‐indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature[J]. Advanced Functional Materials, 2008, 18(7): 1097-1104. doi: 10.1002/adfm.200701216
    [20] TAKAMICHI II DA. 液态金属的物理性能[M]. 北京: 科学出版社, 2006.
    [21] 飯田孝道, 罗格里克·格斯里, Guthrie, 等. 液态金属的物 理性能[M]. 北京: 科学出版社, 2006.
    [22] Szymak P, Praczyk T, Naus K, et al. Research on biomimetic underwater vehicles for underwater ISR[C]//Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VII. Baltimore, MD, United States: SPIE, 2016.
    [23] Kruusmaa M, Fiorini P, Megill W, et al. Filose for svenning: A flow sensing bioinspired robot[J]. IEEE Robotics & Automation Magazine, 2014, 21(3): 51-62.
    [24] Guo S, Shi L. A multifunctional underwater biomimetic microrobot[J]. Robot Fish: Bio-inspired Fishlike Underwater Robots, 2015: 285-313.
    [25] Xu P, Zheng J, Liu J, et al. Deep-Learning-Assisted Underwater 3D Tactile Tensegrity[J]. Research, 2023, 6: 0062. doi: 10.34133/research.0062
    [26] Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12): 3576-3583.
  • 加载中
图(13)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  117
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-14
  • 修回日期:  2023-11-19
  • 录用日期:  2023-11-23
  • 网络出版日期:  2024-02-07

目录

    /

    返回文章
    返回
    服务号
    订阅号