A Calculation Method of High Precision for Underwater Weapon Launch Trajectory
-
摘要: 通过高精度理论推导和CFD滑移技术的耦合, 研究一种针对水下气动发射系统的高精度内弹道计算方法, 并通过试验进行验证。该方法对发射过程中的高压气体域运用四阶Runge-Kutta法进行求解, 水域部分采用滑移网格进行单自由度武器发射仿真, 并建立气体理论计算和流体仿真计算的耦合关系, 从而实现高精度的内弹道计算方法。通过理论计算和流体仿真的耦合, 可弥补单一理论计算误差偏大和单一流体仿真的高成本, 该耦合计算方法具有高精度、低成本的优势。对比试验数据, 通过该方法得到的武器出管速度平均误差为5.6%, 发射气瓶截止压力平均误差为4.0%。Abstract: By combining theoretical calculation and CFD method, a high precision internal ballistic calculation method for the underwater aerodynamic imbalance weapon launch equipment is studied, and the calculation is verified by the experiment. In this method, the theoretical calculation of high order precision for the air part of weapon launch equipment is calculated, and CFD is used to simulate the water. The motion of piston is calculated according to the air pressure and water pressure. By targeting the calculation method, the high error of the overall use of the theoretical calculation is avoided, also with the cost of CFD, and the advantage of high accuracy and low cost is obtained. Compared with the experimental data, the speed error of the weapon is 5.6%, and the pressure error of the posterior cavity is 4.0%.
-
Key words:
- CFD /
- internal ballistic calculation method /
- Pneumatic launch system
-
表 1 计算结果与试验对比
Table 1. Comparison between calculation results and experiments
发射深度/m 发射指标 理论-流体耦
合计算值试验值 误差 50 截止气压/MPa 7.15 6.8 5.1% 武器速度/(m/s) 9.65 10.0 3.5% 75 截止气压/MPa 6.83 6.7 1.9% 武器速度/(m/s) 8.78 8.3 5.8% 100 截止气压/MPa 6.56 6.2 5.8% 武器速度/(m/s) 8.96 8.5 5.4% 125 截止气压/MPa 6.70 6.5 3.1% 武器速度/(m/s) 9.04 8.6 3.5% 150 截止气压/MPa 6.66 6.4 4.1% 武器速度/(m/s) 10.23 9.7 5.5% -
[1] YAO S, JINYI R, SHAN G, et al. Simulation research on the outlet cavity features in the underwater launching process[J]. Ocean Engineering, 2023, 267. [2] 王树宗, 练永庆, 陈一雕. 气动式水下武器发射装置内弹道数学模型[J]. 弹道学报, 2003(1): 21-26. doi: 10.3969/j.issn.1004-499X.2003.01.005WANG S Z, LIAN Y Q, CHEN Y D. The mathemaitc model of the underwater compressed-air launcher[J]. Journal of Ballistics, 2003(1): 21-26 doi: 10.3969/j.issn.1004-499X.2003.01.005 [3] 李忠杰, 王树宗, 练永庆, 等. 气动式水下发射装置的可调节发射阀仿真研究[J]. 系统仿真学报, 2005(12): 3074-3075+3080. doi: 10.3969/j.issn.1004-731X.2005.12.061LI Z J, WANG S Z, LIAN Y Q, et al. Simulation on adjustable discharge valve of underwater compressed-air launcher[J]. Journal of System Simulation, 2005(12): 3074-3075+3080. doi: 10.3969/j.issn.1004-731X.2005.12.061 [4] 胡柏顺, 穆连运, 赵祚德. 潜艇水压平衡式发射装置内弹道仿真建模[J]. 舰船科学技术, 2011, 33(7): 90-93. doi: 10.3404/j.issn.1672-7649.2011.07.022HU B S, MU L Y, ZHAO Z D. Simulation and model of submarine hydraulic and balanceable launching equipment inside trajectory[J]. Ship Science and Technology, 2011, 33(7): 90-93. doi: 10.3404/j.issn.1672-7649.2011.07.022 [5] DEGTIAR V G, PEGOV V I, MOSHKIN I Y, et al. Mathematical modeling of the processes of heat and mass transfer of hot gas jets with fluid during underwater rocket launches[J]. High Temperature, 2019, 57(5): 707-711. doi: 10.1134/S0018151X19050031 [6] 高山, 施瑶, 潘光, 等. 水下发射航行体尾涡不稳定性分析[J]. 力学学报, 2022, 54(9): 2435-2445. doi: 10.6052/0459-1879-22-245GAO S, SHI Y, PAN G, et al. Study on the wake vortex instability of the projectile launched underwater[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445. doi: 10.6052/0459-1879-22-245 [7] 刘元清, 张晨星, 陈香言, 等. 水下航行器-发射筒间隙流动仿真[J]. 水下无人系统学报, 2022, 30(4): 450-456. doi: 10.11993/j.issn.2096-3920.202109013LIU Y Q, ZHANG C X, CHEN X Y, et al. Simulation of gap flow of an underwater vehicle-launch tube[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 450-456. doi: 10.11993/j.issn.2096-3920.202109013