Study on Reaction Kinetics Parameters and Combustion Phenomena of Li/SF6
-
摘要: 为探究不同温度及压力条件下锂/六氟化硫(Li/SF6)燃烧现象及反应动力学参数, 利用激波诱导高压热载荷激励Li/SF6燃烧实验台测量了温度范围为830 ~1 400 K, 压力范围为0.8 ~11 atm时的点火滞燃期; 利用可视化实验段探究了Li/SF6燃烧过程和基本发光现象等规律; 利用点火滞燃期与温度和压力呈现出的典型Arrhenius依赖关系, 通过多元线性回归法得出反应动力学参数。研究结果表明, Li/SF6燃烧的点火滞燃期随温度和压力的升高而减少, 发光现象随压力的升高由红色孤立火核逐渐转化为白色明亮火焰, 并结合实验测定的点火滞燃期求出了指前因子 A 、指数因子 n 和活化能 Ea, 为明晰燃烧特性、构建数值仿真提供了重要依据。Abstract: In order to investigate the combustion phenomenon and reaction kinetics parameters of Li/SF6 under different temperature and pressure conditions, the Li/SF6 combustion test platform with shock wave-induced high pressure thermal load excitation was used to measure the ignition delay period at the temperature of 830~1 400 K and the pressure range of 0.8~11 atm. The laws of Li/SF6 combustion process and basic luminescence phenomena were investigated by the visual experiment section. Based on the typical Arrhenius dependence between ignition delay period and temperature and pressure, the reaction kinetics parameters were obtained by multiple linear regression method. The results show that the ignition delay period of Li/SF6 combustion decreases with the increase in temperature and pressure, and the luminescence phenomenon gradually changes from a red isolated fire nucleus to a white bright flame with the increase in pressure. The pre-index factor A, exponential factor N, and activation energy Ea are obtained based on the experimentally measured ignition delay period, which provides an important basis for the identification of combustion characteristics and the construction of numerical simulation.
-
Key words:
- Li/SF6 /
- ignition delay period /
- reaction kinetics /
- shock wave
-
表 1 Li/SF6燃烧点火滞燃期实验工况点
Table 1. Experimental conditions of ignition delay period of Li/SF6 combustion
序号 点火压力/atm 爆发压力/atm 点火温度/K 点火滞燃期/μs 质量/mg 1 0.85 1.91 787.8 458.60 30 2 0.87 2.46 869.8 393.10 100 3 0.89 2.14 860.2 396.80 30 4 0.91 3.20 1 355.4 209.00 30 5 0.95 2.69 1 172.2 259.80 30 6 1.00 2.62 991.5 339.2 30 7 1.02 2.69 961.4 313.90 30 8 1.16 2.74 836.2 320.40 30 9 2.19 6.52 986.7 234.20 30 10 2.73 9.81 1 383.4 106.10 30 11 2.78 8.14 921.6 201.80 100 12 3.91 9.18 935.8 179.00 30 13 4.39 8.69 945.4 162.80 30 14 5.05 7.67 935.3 131.30 30 15 8.89 13.08 931.7 111.20 30 16 10.71 24.29 937.7 92.60 30 -
[1] Qu Y, Zou C, Xia W, et al. Shock tube experiments and numerical study on ignition delay times of ethane in super lean and ultra-lean combustion[J]. Combustion and Flame, 2022, 246: 112462. [2] 徐胜利, 张英佳, 黄佐华, 等. 激波管研究煤油/空气混合气的自着火特性[J]. 科学通报, 2011, 56(1): 88-96. [3] Hartmann M, Gushterova I, Fikri M, et al. Auto ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling[J]. Combustion and Flame, 2011, 158(1): 172-178. [4] Davidson D F, Oehlschlaeger M A, Hanson R K. Methyl concentration time-histories during Iso-octane and N-heptane oxidation and pyrolysis[J]. Proceedings of the Combustion Institute, 2007, 31(1): 321-328. [5] 黄文林, 孙五川, 张英佳, 等. 二甲醚低温低压自点火行为的实验和理论研究[J]. 工程热物理学报, 2021, 42(4): 1070-1079.Huang Wenlin, Sun Wuchuan, Zhang Yingjia, et al. Experimental and theoretical study of dimethyl ether auto-ignition at low temperature and low pressure[J]. Journal of Engineering Thermophysics, 2021, 42(4): 1070-1079. [6] Thomas W M, Herman K, Rodney L B. Shock tube ignition of AL/MG alloys in water vapor and argon[J]. Experimental Thermal and Fluid Science, 1993, 7(2): 154-154. [7] 郑波, 胡栋, 丁儆. 铝粉尘激波点火的实验研究[J]. 爆炸与冲击, 1997(2): 174-181.Zheng Bo, Hu Dong, Ding Jing. Experimental study of shuck wave ignition of aluminum dust[J]. Explosion and Shock Waves, 1997(2): 174-181. [8] 梁金虎. 煤油点火及铝粉点火和燃烧特性的激波管研究[D]. 重庆: 重庆大学, 2015. [9] Zhang F. Detonation in reactive solid particle-gas flow [J]. Journal of Propulsion and Power. 2006, 22 (6): 1289-1309. [10] 郑邯勇, 卜建杰. 六氟化硫在熔融锂中的浸没喷射反应过程[J]. 化工学报, 1996, 47(6): 656-662.Zheng Hanyong, Bu Jianjie. The submerged jet reaction process of sulfur hexafluoride into molten lithium[J]. CIESC Journal, 1996, 47(6): 656-662. [11] 张文群, 张振山. 一种非理想多相共存体系平衡的通用计算方法[J]. 兵器材料科学与工程, 2002, 25(6): 8-11.Zhang Wenqun, Zhang Zhenshan. General computational method of phase equilibrium of multiphase non-ideal systems[J]. Ordnance Material Science and Engineering, 2002, 25(6): 8-11. [12] 张立超. 高温化学蓄热器的技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007. [13] 祝晓瑜. Li/SF6表面喷射反应器内燃烧流场数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [14] 张会强, 林文漪, 周力行. 锂/六氟化硫气——液浸没有反应射流和燃烧的数值研究[J]. 工程热物理学报, 1996, 17(4): 482-486. [15] Lyu H Y, Chen L D. On the estimates of Li2S thermodynamic properties for prediction of Li-SF6 wick combustion[J]. Journal of Physics & Chemistry of Solids, 2013, 46(12): 1427-1429. [16] Chan S H, Tan C C, Zhao Y G, et al. Li-SF6 combustion in stored chemical energy propulsion systems[J]. Technical Report. 1991, 23(1): 1139-1146. [17] Parnell L A, Nelson R S, Ogden T R, et al. Flash and real-time radiographic diagnostics of closed liquid metal combustion for underwater propulsion[C]//IEEE 25th Intersociety Energy Conversion Engineering Conference. Reno, Nevada: IEEE, 1990. [18] 宗潇, 李宏伟, 韩新波, 等. 气液射流反应流动特性的数值研究[J]. 西安交通大学学报, 2020, 54(3): 35-40, 196.Zong Xiao, Li Hongwei, Han Xinbo, et al. Numerical investigation on flow characteristics of gas-lquid reactive jet[J]. Journal of Xi’an Jiaotong University, 2020, 54(3): 35-40, 196.