Simulation Analysis of KCS Wake Induced Electromagnetic Field
-
摘要: 为了更系统地研究船舶在航行过程中引起的尾流感应电磁场, 文中以有限元法为基础, 利用磁流体力学、麦克斯韦方程组等电磁场和流体力学理论, 对KCS船舶尾流运动产生的感应电磁场进行仿真分析。结果表明: KCS船舶尾流感应磁场量级在可探测范围内有明显的分布规律; 尾流感应磁场在传播方向上存在极值, 其大小与测量位置相关; 尾流感应磁场先随距离增大到极值, 再沿传播距离方向逐渐衰减; 尾流电流密度沿传播距离方向逐渐衰减。文中的研究可为海洋电磁探测及船舶跟踪和定位等研究提供参考。Abstract: In order to more systematically study the wake induced electromagnetic field caused during the navigation of the ship, based on the finite element method, the induced electromagnetic field generated by the wake motion of the Kriso container ship(KCS) was simulated by using magnetohydrodynamics, Maxwell equations, and other electromagnetic fields and fluid mechanics theories. The results show that the magnitude of KCS wake induced magnetic field has an obvious distribution law in the detectable range. The wake induced magnetic field has an extreme value in the direction of propagation, and its magnitude is related to the measurement position; the wake induced magnetic field increases with the distance to the extreme value and then gradually decreases along the propagation distance; the wake current density decreases along the propagation distance. The research in this paper can provide a reference for ocean electromagnetic exploration and ship tracking and positioning.
-
表 1 KCS集装箱船主要参数
Table 1. Main parameters of the KCS container ship
参数 实船 船模 船长Lpp/$ {\text{m}} $ 230.0 7.278 6 型宽W/m 32.2 1.019 0 型深D/m 19.0 0.601 3 设计吃水深度d/m 10.8 0.341 8 湿表面积S/m2 9 424 9.437 9 方形系数Cb 0.650 5 0.650 5 设计状态Frd 0.260 0.260 0 设计航速v/(m/s) 12.345 6 2.196 2 -
[1] 张建生. 尾流的光学特性研究与测量[D]. 西安: 中国科学院西安光学精密机械研究所, 2001. [2] 张建生, 刘建康, 冀邦杰. 真实尾流的光学特性[J]. 光子学报, 2002, 31(10): 1284-1288.ZHANG J S, LIU J K, JI B J. Optical specialty of real wakes[J]. Acta Photonica Sinica, 2002, 31(10): 1284-1288. [3] 张建生, 孙建鹏, 陈焱, 等. 光学遥感探测尾流研究[J]. 西安工业大学学报, 2013, 33(4): 268-277. doi: 10.3969/j.issn.1673-9965.2013.04.002ZHANG J S, SUN J P, CHEN Y, et al. Study on detection of ship wake using optical remote sensing[J]. Journal of Xi’an Technological University, 2013, 33(4): 268-277. doi: 10.3969/j.issn.1673-9965.2013.04.002 [4] 张成基, 张建生. 船舶尾流感应磁场特性分析[J]. 兰州工业学院学报, 2019, 26(3): 50-55. doi: 10.3969/j.issn.1009-2269.2019.03.010ZHANG C J, ZHANG J S. Characteristic analysis on induced magnetic field of ship wake[J]. Journal of Lanzhou Institute of Technology, 2019, 26(3): 50-55. doi: 10.3969/j.issn.1009-2269.2019.03.010 [5] ZOU N, NEHORAI A. Detection of ship wakes using an airborne magnetic transducer[J]. Geoscience & Remote Sensing IEEE Transactions, 2000, 38(1): 532-539. [6] YAAKOBI O, ZILMAN G, MILOH T. Detection of the electromagnetic field induced by the wake of a ship moving in a random sea of finite depth[C]//Meeting of the Divison of Fluid Dynamics. Salt Lake City: American Physical Society, 2007: 17-27. [7] 王伟. 海面舰船尾迹仿真与电磁计算[D]. 西安: 西安电子科技大学, 2015. [8] 张建生, 张成基, 鲁晓璐, 等. 船舶尾流磁异常模拟系统设计与实现[J]. 大学物理, 2018, 37(7): 40-46.ZHANG J S, ZHANG C J, LU X L, et al. Design and implementation of magnetic anomaly simulation system for ship wake[J]. College Physics, 2018, 37(7): 40-46. [9] 张伽伟, 姜润翔, 龚沈光. 浅海中船舶尾流产生的感应电磁场[J]. 哈尔滨工程大学学报, 2014, 35(8): 931-935. doi: 10.3969/j.issn.1006-7043.201306049ZHANG J W, JIANG R X, GONG S G. Study of the electric field induced by the wake of a moving ship[J]. Journal of Harbin Engineering University, 2014, 35(8): 931-935. doi: 10.3969/j.issn.1006-7043.201306049 [10] 张伽伟, 熊露, 姜润翔. 浅海中水下航行器尾流感应电磁场建模与仿真[J]. 系统工程与电子技术, 2016, 38(5): 1004-1009. doi: 10.3969/j.issn.1001-506X.2016.05.06ZHANG J W, XIONG L, JIANG R X. Modeling and simulation of electromagnetic field induced by wake of a submerged vehicle moving in shallow sea[J]. Systems Engineer and Electronics, 2016, 38(5): 1004-1009. doi: 10.3969/j.issn.1001-506X.2016.05.06 [11] KIM J. RANS computations for KRISO container ship and VLCC tanker using the WAVIS code[C]//Proceedings of CFD Workshop. Tokyo, Japan: [s.n.], 2005. [12] 梁光琪, 黄技, 钟一鸣, 等. 浅水航道对标准船模KCS的影响研究[J]. 中国水运(下半月), 2020, 20(2): 15-16, 24.LIANG G Q, HUANG J, ZHONG Y M, et al. Influence of shallow water channel on KCS of standard ship model[J]. China Water Transport, 2020, 20(2): 15-16, 24. [13] 孙帅, 王超, 常欣, 等. 浅水效应对船舶阻力及流场特性的影响分析[J]. 哈尔滨工程大学学报, 2017, 38(4): 499-505. doi: 10.11990/jheu.201512026SUN S, WANG C, CHANG X, et al. Analysis of ship resistance and flow field characteristics in shallow water[J]. Journal of Harbin Engineering University, 2017, 38(4): 499-505. doi: 10.11990/jheu.201512026 [14] ZHU X J, DU C P, XIA M Y. Modeling of magnetic field induced by ship wake[C]//2015 IEEE International Conference on Computational Electromagnetics. [S.l]: IEEE, 2015: 374-376. [15] YA O, ZILMAN G, MILOH T. Detection of the electromag- netic field induced by the wake of a ship moving in a random sea of finite depth[J]. Meeting of the Divison of Fluid Dynamics, 2007, 70(1-3): 17-27. [16] SCHETZ J A, JAKUBOWSKI A K. Experimental studies of the turbulent wake behind self-propelled slender bodies[J]. AIAA Journal, 1975, 13(12): 1568-1575. doi: 10.2514/3.7035