• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KCS船舶尾流感应电磁场仿真分析

兰青 闫林波 任斌斌

兰青, 闫林波, 任斌斌. KCS船舶尾流感应电磁场仿真分析[J]. 水下无人系统学报, 2024, 32(6): 1-6 doi: 10.11993/j.issn.2096-3920.2023-0101
引用本文: 兰青, 闫林波, 任斌斌. KCS船舶尾流感应电磁场仿真分析[J]. 水下无人系统学报, 2024, 32(6): 1-6 doi: 10.11993/j.issn.2096-3920.2023-0101
LAN Qing, YAN Linbo, REN Binbin. Simulation Analysis of KCS Ship Wake Induced Electromagnetic Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0101
Citation: LAN Qing, YAN Linbo, REN Binbin. Simulation Analysis of KCS Ship Wake Induced Electromagnetic Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0101

KCS船舶尾流感应电磁场仿真分析

doi: 10.11993/j.issn.2096-3920.2023-0101
基金项目: 陕西省重点研发计划(2023-YBGY-016); 西安市未央区科技计划(201843).
详细信息
    作者简介:

    兰青:兰 青(1989-), 男, 硕士, 主要研究方向为水下信息光学、电磁学探测

  • 中图分类号: U674.701; TJ630

Simulation Analysis of KCS Ship Wake Induced Electromagnetic Field

  • 摘要: 为了更系统地研究船舶在航行过程中引起的尾流感应电磁场, 文中以有限元法为基础, 利用磁流体力学、麦克斯韦方程组等电磁场和流体力学理论, 对KCS船尾流运动产生的感应电磁场进行仿真分析。结果表明: KCS船尾流感应磁场量级在可探测范围内, 有明显的分布规律; 尾流感应磁场在传播方向上存在极值, 其大小与测量位置相关; 尾流感应磁场先随距离增大到极值, 再沿传播距离方向逐渐衰减; 尾流电流密度沿传播距离方向逐渐衰减。文中的研究可为海洋电磁探测及船舶跟踪和定位等研究提供参考。

     

  • 图  1  KCS集装箱船

    Figure  1.  KCS container ship

    图  2  船体坐标系示意图

    Figure  2.  Schematic diagram of the hull coordinate system

    图  3  计算域网格划分

    Figure  3.  Calculate the domain meshes

    图  4  测量点(z=−0.1Lpp)处磁场强度和磁场分量沿x方向传播曲线

    Figure  4.  At the measuring point (0.1 times the ship) BBxByBz along x-axis

    图  5  海平面处磁场强度和磁场分量沿x方向传播曲线

    Figure  5.  At the sea level $ {B_z} $ along x-axis

    图  6  不同测量点下磁场强度沿yz方向传播曲线

    Figure  6.  The B propagation curve along y axis and z axis under different measurement points

    图  7  不同测量位置处电流密度沿不同方向的变化曲线

    Figure  7.  Current density along z-axis

    表  1  KCS集装箱船主要参数

    Table  1.   Main Parameters of the KCS Container Ship

    参数实船船模
    船长Lpp/$ {\text{m}} $230.07.278 6
    型宽W/m32.21.019 0
    型深D/m19.00.601 3
    设计吃水d/m10.80.341 8
    湿表面积S/m29 4249.437 9
    方形系数Cb0.650 50.650 5
    设计状态Frd0.2600.260 0
    设计航速V/(m/s)12.345 62.196 2
    下载: 导出CSV
  • [1] 张建生. 尾流的光学特性研究与测量[D]. 西安: 中国科学院西安光学精密机械研究所, 2001.
    [2] 张建生, 刘建康, 冀邦杰. 真实尾流的光学特性[J]. 光子学报, 2002, 31(10): 1284-1288.

    Zhang Jiansheng, Liu Jiankang, Ji Bangjie. Optical specialty of real wakes[J]. Acta Photonica Sinica, 2002, 31(10): 1284-1288.
    [3] 张建生, 孙建鹏, 陈焱, 等. 光学遥感探测尾流研究[J]. 西安工业大学学报, 2013, 33(4): 268-277. doi: 10.3969/j.issn.1673-9965.2013.04.002

    Zhang Jiansheng, Sun Jianpen()g, Chen Yan, et al. Study on detection of ship wake using optical remote sensing[J]. Journal of Xi’an Institute of Technology, 2013, 33(4): 268-277. doi: 10.3969/j.issn.1673-9965.2013.04.002
    [4] 张成基, 张建生. 船舶尾流感应磁场特性分析[J]. 兰州工业学院学报, 2019, 26(3): 50-55. doi: 10.3969/j.issn.1009-2269.2019.03.010

    Zhang Chengji, Zhang Jiansheng. Characteristic analysis on induced magnetic field of ship wake[J]. Journal of Lanzhou Institute of Technology, 2019, 26(3): 50-55. doi: 10.3969/j.issn.1009-2269.2019.03.010
    [5] Zou N, Nehorai A. Detection of ship wakes using an airborne magnetic transducer[J]. Geoscience & Remote Sensing IEEE Transactions, 2000, 38(1): 532-539.
    [6] Yaakobi O, Zilman G, Miloh T. Detection of the electromagnetic field induced by the wake of a ship moving in a random sea of finite depth[C]//Meeting of the Divison of Fluid Dynamics. Salt Lake City: American Physical Society, 2007: 17-27.
    [7] 王伟. 海面舰船尾迹仿真与电磁计算[D]. 西安: 西安电子科技大学, 2015.
    [8] 张建生, 张成基, 鲁晓璐, 等. 船舶尾流磁异常模拟系统设计与实现[J]. 大学物理, 2018, 37(7): 40-46.

    Zhang Jiansheng, Zhang Chengji, Lu Xiaolu, et al. Design and implementation of magnetic anomaly simulation system for ship wake[J]. College Physics, 2018, 37(7): 40-46.
    [9] 张伽伟, 姜润翔, 龚沈光. 浅海中船舶尾流产生的感应电磁场[J]. 哈尔滨工程大学学报, 2014, 35(8): 931-935. doi: 10.3969/j.issn.1006-7043.201306049

    Zhang Jiawei, Jiang Runxiang, Gong Shenguang. Study of the electric field induced by the wake of a moving ship[J]. Journal of Harbin Engineering University, 2014, 35(8): 931-935. doi: 10.3969/j.issn.1006-7043.201306049
    [10] 张伽伟, 熊露, 姜润翔. 浅海中水下航行器尾流感应电磁场建模与仿真[J]. 系统工程与电子技术, 2016, 38(5): 1004-1009. doi: 10.3969/j.issn.1001-506X.2016.05.06

    Zhang Jiawei, Xiong Lu, Jiang Runxiang. Modeling and simulation of electromagnetic field induced by wake of a submerged vehicle moving in shallow sea[J]. Systems Engineer and Electronics, 2016, 38(5): 1004-1009. doi: 10.3969/j.issn.1001-506X.2016.05.06
    [11] KIM J. RANS computations for KRISO container ship and VLCC tanker using the WAVIS code[C]//Proceedings of CFD Workshop. Tokyo, Japan: [s.n.], 2005
    [12] 梁光琪, 黄技, 钟一鸣, 等. 浅水航道对标准船模KCS的影响研究[J]. 中国水运(下半月), 2020, 20(2): 15-16, 24.

    Liang Guangqi, Huang Ji, Zhong Yiming, et al. Influence of shallow water channel on KCS of standard ship model[J]. China Water Transport, 2020, 20(2): 15-16, 24.
    [13] 孙帅, 王超, 常欣, 等. 浅水效应对船舶阻力及流场特性的影响分析[J]. 哈尔滨工程大学学报, 2017, 38(4): 499-505. doi: 10.11990/jheu.201512026

    Sun Shuai, Wang Chao, Chang Xin, et al. Analysis of ship resistance and flow field characteristics in shallow water[J]. Journal of Harbin Engineering University, 2017, 38(4): 499-505. doi: 10.11990/jheu.201512026
    [14] Zhu X J, Du C P, Xia M Y. Modeling of magnetic field induced by ship wake[C]//2015 IEEE International Conference on Computational Electromagnetics. [S.l]: IEEE, 2015: 374-376.
    [15] Ya O, Zilman G, Miloh T. Detection of the electromag- netic field induced by the wake of a ship moving in a random sea of finite depth[J]. Meeting of the Divison of Fluid Dynamics, 2007, 70(1-3): 17-27.
    [16] Schetz J A, Jakubowski A K. Experimental studies of the turbulent wake behind self-propelled slender bodies[J]. Aiaa Journal, 1975, 13(12): 1568-1575. doi: 10.2514/3.7035
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-09-28
  • 录用日期:  2023-10-10
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回
    服务号
    订阅号