[1] |
许蕾, 张鹏. 国内外钝感弹药评估标准的发展与分析[J]. 航天标准化, 2010(4): 35-37. doi: 10.3969/j.issn.1009-234X.2010.04.009XU L, ZHANG P. The development and analysis of evaluating standard about insensitive ammunition at home and aboard[J]. Aerospace Standardization, 2010(4): 35-37. doi: 10.3969/j.issn.1009-234X.2010.04.009
|
[2] |
Division N S. Department of defense test method standard, hazard assessment tests for non-nuclear munitions: MIL-STD-2105D[S]. U.S.: Department of Defense, 2011.
|
[3] |
沙洪博, 袁俊明, 黄求安, 等. DNAN基熔铸装药榴弹跌落冲击特性与安全性分析[J]. 爆破器材, 2021, 50(5): 28-33, 38. doi: 10.3969/j.issn.1001-8352.2021.05.005SHA H B, YUAN J M, HUANG Q A, et al. Drop impact characteristics and safety analysis of DNAN-based melt-cast charge grenade[J]. Explosive Materials, 2021, 50(5): 28-33, 38. doi: 10.3969/j.issn.1001-8352.2021.05.005
|
[4] |
宗方勇, 柴朋军. 复合材料水雷壳体抗自由跌落冲击性能数值模拟分析[J]. 玻璃钢/复合材料, 2016(12): 90-98, 22.ZONG F Y, CHAI P J. Impact simulation analysis for free falling status of composite torpedo shell[J]. FRP/Composite, 2016(12): 90-98, 22.
|
[5] |
张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2009.
|
[6] |
王世英. 炸药装药在落锤撞击下的应力测试方法研究[J]. 计测技术, 2013, 33(z1): 49-52. doi: 10.3969/j.issn.1674-5795.2013.z1.015WANG S Y. Study of stress test methods for explosive charges under impact with a drop hammer[J]. Metrology & Measurement Technology, 2013, 33(z1): 49-52. doi: 10.3969/j.issn.1674-5795.2013.z1.015
|
[7] |
屈雪蕊. Comp. B含能材料落锤冲击应力特性分析[J]. 西安航空学院学报, 2021, 39(3): 70-74, 96. doi: 10.3969/j.issn.1008-9233.2021.03.013QU X R. Stress analysis of falling weight impact test of Comp. B energetic materials[J]. Journal of Xi’an Aeronautical University, 2021, 39(3): 70-74, 96. doi: 10.3969/j.issn.1008-9233.2021.03.013
|
[8] |
国防科学技术工业委员会. 炸药试验方法: GJB772A-97[S]. 北京: 中国标准出版社, 1997.
|
[9] |
代晓淦, 向永, 申春迎, 等. 大药片落锤撞击感度研究[J]. 爆炸与冲击, 2006, 26(4): 381-384. doi: 10.3321/j.issn:1001-1455.2006.04.017DAI X G, XIANG Y, SHEN C Y, et al. Study of drop hammer impact sensitivity for big-bill explosives[J]. Explosion and Shock Waves, 2006, 26(4): 381-384. doi: 10.3321/j.issn:1001-1455.2006.04.017
|
[10] |
高立龙, 牛余雷, 王浩, 等. 典型炸药柱的400 kg落锤撞击感度特性分析[J]. 含能材料, 2011, 19(4): 428-431. doi: 10.3969/j.issn.1006-9941.2011.04.017GAO L L, NIU Y L, WANG H, et al. Analysis of impact sensitivity characteristics for typical explosive cylinder[J]. Chinese Journal of Energetic Materials, 2011, 19(4): 428-431. doi: 10.3969/j.issn.1006-9941.2011.04.017
|
[11] |
王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(z1): 33-39. doi: 10.3969/j.issn.1000-1093.2021.S1.004WANG X Y, WANG S S, WANG S H, et al. Drop impact response characteristics of typical explosive charge in underwater warhead[J]. Acta Armamentarii, 2021, 42(z1): 33-39. doi: 10.3969/j.issn.1000-1093.2021.S1.004
|
[12] |
汪建锋, 白春华, 李建平, 等. 一次起爆型FAE装药发射安全性实验研究[J]. 弹箭与制导学报, 2008, 28(3): 107-109. doi: 10.3969/j.issn.1673-9728.2008.03.032WANG J F, BAI C H, LI J P, et al. The experimental investigation on launching safety of FAE explosive charge[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 107-109. doi: 10.3969/j.issn.1673-9728.2008.03.032
|
[13] |
高大元, 申春迎, 黄谦, 等. 炸药件在模拟跌落试验中的响应[J]. 火炸药学报, 2012, 35(5): 13-16. doi: 10.3969/j.issn.1007-7812.2012.05.003GAO D Y, SHEN C Y, HUANG Q, et al. Reaction of explosive subassembly under simulated drop test[J]. Chinese Journal of Explosives & Propellants, 2012, 35(5): 13-16. doi: 10.3969/j.issn.1007-7812.2012.05.003
|
[14] |
廖军, 代晓淦, 黄谦, 等. 药片落锤撞击试验中B炸药的响应特性[J]. 火炸药学报, 2013, 36(1): 52-54. doi: 10.3969/j.issn.1007-7812.2013.01.011LIAO J, DAI X G, HUANG Q, et al. Reaction characteristic for composition B in drop hammer impact sensitivity test[J]. Chinese Journal of Explosives & Propellants, 2013, 36(1): 52-54. doi: 10.3969/j.issn.1007-7812.2013.01.011
|
[15] |
徐洪涛, 孔德仁, 胡宏伟, 等. 火炸药药柱撞击感度试验装置及方法[J]. 火炸药学报, 2010, 33(3): 30-33. doi: 10.3969/j.issn.1007-7812.2010.03.008XU H T, KONG D R, HU H W, et al. Impact sensitivity test system and test method of explosives column[J]. Chinese Journal of Explosives & Propellants, 2010, 33(3): 30-33. doi: 10.3969/j.issn.1007-7812.2010.03.008
|
[16] |
徐洪涛, 宋震, 田轩, 等. 两种典型炸药装药的撞击试验研究[J]. 火工品, 2015(2): 29-32. doi: 10.3969/j.issn.1003-1480.2015.02.009XU H T, SONG Z, TIAN X, et al. The experimental research on the impact safety of the two explosive charges[J]. Initiators & Pyrotechnics, 2015(2): 29-32. doi: 10.3969/j.issn.1003-1480.2015.02.009
|
[17] |
徐洪涛, 冯博, 冯晓军, 等. 低速撞击不同温度下炸药药柱的响应特性[J]. 爆破器材, 2015, 44(1): 16-19. doi: 10.3969/j.issn.1001-8352.2015.01.004XU H T, FENG B, FENG X J, et al. Reaction characteristic of explosive columns on different temperatures in low speed impacting multiple test[J]. Explosive Materials, 2015, 44(1): 16-19. doi: 10.3969/j.issn.1001-8352.2015.01.004
|
[18] |
陈皓, 徐洪涛, 邹洪辉, 等. 典型炸药药柱撞击感度的试验研究[J]. 火炸药学报, 2018, 41(2): 127-130,136.CHEN H, XU H T, ZOU H H, et al. Experimental study on impact sensitivity of typical explosive grain[J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 127-130, 136.
|
[19] |
WIEGAND D A, PINTO J, NICOLAIDES S. The mechanical response of TNT and a composite, composition B, of TNT and RDX to compressive stress: I uniaxial stress and fracture[J]. Journal of Energetic Materials, 1991, 9(1-2): 19-80. doi: 10.1080/07370659108019858
|
[20] |
WIEGAND D A, PINTO J. The mechanical response of TNT and a composite, Composition B, of TNT and RDX to compressive stress: III dependence on processing and composition[J]. Journal of Energetic Materials, 1991, 9(5): 349-413. doi: 10.1080/07370659108019381
|
[21] |
PINTO J, WIEGAND D A. The mechanical response of TNT and A composite, composition B, of TNT and RDX to compressive stress: II triaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(3): 205-263. doi: 10.1080/07370659108019865
|
[22] |
GRAY III G T, IDAR D J, BLUMENTHAL W R, et al. High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature[R]. Los Alamos, NM(U.S.): Los Alamos National Lab(LANL), 1998.
|
[23] |
IDAR D J, THOMPSON D G, GRAY III G T, et al. Influence of polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501[J]. Institute of Physics, 2002, 620(1): 821-824.
|
[24] |
BLUMENTHAL W R, GRAY III G T, IDAR D J, et al. Influence of temperature and strain rate on the mechanical behavior of PBX 9502 and Kel-F 800™[J]. American Institute of Physics, 2000, 505(1): 671-674.
|
[25] |
CADY C M, BLUMENTHAL W R, GRAY III G T, et al. Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature[J]. Polymer Engineering & Science, 2006, 46(6): 812-819.
|
[26] |
HOFFMAN D M. Dynamic mechanical signatures of a polyester-urethane and plastic-bonded explosives based on this polymer[J]. Journal of Applied Polymer Science, 2002, 83(5): 1009-1024. doi: 10.1002/app.2281
|
[27] |
BLUMENTHAL W R, THOMPSON D G, CADY C M, et al. Compressive properties of PBXN-110 and its HTPB binder as a function of temperature and strain rate[C]//The 12th International Detonation Symposium. San Diego, CA, United States: Office of Naval Research, 2002.
|
[28] |
DRODGE D, WILLIAMSON D M, PALMER S, et al. Strain-rate master curves for a PBX and binder[J]. American Institute of Physics, 2011, 1426: 653-656.
|
[29] |
DRODGE D R, WILLIAMSON D M, PALMER S J P, et al. The mechanical response of a PBX and binder: Combining results across the strain-rate and frequency domains[J]. Journal of Physics D: Applied Physics, 2010, 43(33): 335403. doi: 10.1088/0022-3727/43/33/335403
|
[30] |
WILLIAMSON D M, SIVIOUR C R, PROUD W G, et al. Temperature-time response of a polymer bonded explosive in compression (EDC37)[J]. Journal of Physics D: Applied Physics, 2008, 41(8): 085404. doi: 10.1088/0022-3727/41/8/085404
|
[31] |
WIEGAND D A, REDDINGIUS B. Mechanical properties of confined explosives[J]. Journal of Energetic Materials, 2005, 23(2): 75-98. doi: 10.1080/07370650590936415
|
[32] |
蓝林钢, 温茂萍, 李明, 等. 被动围压下PBX的冲击动态力学性能[J]. 火炸药学报, 2011, 34(4): 41-44. doi: 10.3969/j.issn.1007-7812.2011.04.010LAN L G, WEN M P, LI M, et al. Impact mechanical properties of PBX in passive confined pressure[J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 41-44. doi: 10.3969/j.issn.1007-7812.2011.04.010
|
[33] |
韩小平, 张元冲, 张泰华, 等. 含能材料受限三轴压缩实验的数值模拟[J]. 火炸药学报, 1999, 18(2): 51-55. doi: 10.3969/j.issn.1007-7812.1999.02.014HAN X P, ZHANG Y C, ZHANG T H, et al. The numerical modeling of mechanical response of energetic materials to confined triaxial compression[J]. Chinese Journal of Explosives & Propellants, 1999, 18(2): 51-55. doi: 10.3969/j.issn.1007-7812.1999.02.014
|
[34] |
韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态压缩力学性能和本构关系的研究[J]. 实验力学, 1996, 11(3): 303-310.HAN X P, ZHANG Y C, SHEN Y P, et al. Dynamic behavior and constitutive model of Comp. B explosive[J]. Journal of Experimental Mechanics, 1996, 11(3): 303-310.
|
[35] |
韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态力学性能和塑性流动本构关系的研究[J]. 力学学报, 1996, 28(3): 64-72.HAN X P, ZHANG Y C, SHEN Y P, et al. A study of dynamic mechnical response and constitutive model of energetic materials[J]. Acta Mechanica Sinica, 1996, 28(3): 64-72.
|
[36] |
韩小平, 张元冲, 沈亚鹏, 等. 高能材料动态力学性能的研究[J]. 爆炸与冲击, 1995(1): 20-27. doi: 10.11883/1001-1455(1995)01-0020-8HAN X P, ZHANG Y C, SHEN Y P, et al. An experimental study on dynamic mechanical properties of energetic materials[J]. Explosion and Shock Waves, 1995(1): 20-27. doi: 10.11883/1001-1455(1995)01-0020-8
|
[37] |
BROWNING R V, GURTIN M E, WILLIAMS W O. A one-dimensional viscoplastic constitutive theory for filled polymers[J]. International Journal of Solids and Structures, 1984, 20(11): 921-934.
|
[38] |
SEAMAN L, SIMONS J W, ERLICH D C, et al. Development of a viscous internal damage model for energetic materials based on the BFRACT microfracture model[C]//11th International Detonation Symposium. Snowmass, Colorado, U.S.: [s.n.], 1998: 632-639.
|
[39] |
SCHAPERY R A. Nonlinear viscoelastic solids[J]. International Journal of Solids and Structures, 2000, 37(1): 359-366.
|
[40] |
SCHAPERY R A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215-253. doi: 10.1016/0022-5096(90)90035-3
|
[41] |
SCHAPERY R A. A micromechanical model for non-linear viscoelastic behavior of particle-reinforced rubber with distributed damage[J]. Engineering Fracture Mechanics, 1986, 25(5): 845-867.
|
[42] |
李英雷, 李大红, 胡时胜, 等. TATB钝感炸药本构关系的实验研究[J]. 爆炸与冲击, 1999, 19(4): 353-359. doi: 10.3321/j.issn:1001-1455.1999.04.011LI Y L, LI D H, HU S S, et al. An experimental study on constitutive relation of TATB explosive[J]. Explosion and Shock Waves, 1999, 19(4): 353-359. doi: 10.3321/j.issn:1001-1455.1999.04.011
|
[43] |
周风华, 王札立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342. doi: 10.11883/1001-1455(1992)04-0333-10ZHOU F H, WANG Z L, HU S S. A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of pmma at high strain-rates[J]. Explosion and Shock Waves, 1992, 12(4): 333-342. doi: 10.11883/1001-1455(1992)04-0333-10
|
[44] |
吴会民, 卢芳云. 一种高聚物粘结炸药和B炸药的本构关系研究[J]. 高压物理学报, 2005, 19(2): 139-144. doi: 10.3969/j.issn.1000-5773.2005.02.007WU H M, LU F Y. Research on constitutive relation of a polymer bonded explosive and pressed Comp. B[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 139-144. doi: 10.3969/j.issn.1000-5773.2005.02.007
|
[45] |
吴会民, 卢芳云, 卢力, 等. 三种含能材料力学行为应变率效应的实验研究[J]. 含能材料, 2004, 12(4): 227-230. doi: 10.3969/j.issn.1006-9941.2004.04.008WU H M, LU F Y, LU L, et al. Experimental studies on strain-rate effects of mechanical behaviors of energetic materials[J]. Energetic Materials, 2004, 12(4): 227-230. doi: 10.3969/j.issn.1006-9941.2004.04.008
|
[46] |
卢芳云, 林玉亮, 王晓燕, 等. 含能材料的高应变率响应实验[J]. 火炸药学报, 2006, 19(1): 1-4. doi: 10.3969/j.issn.1007-7812.2006.01.001LU F Y, LIN Y L, WANG X Y, et al. Experimental investigation on dynamic response of energetic materials at high strain rate[J]. Chinese Journal of Explosives & Propellants, 2006, 19(1): 1-4. doi: 10.3969/j.issn.1007-7812.2006.01.001
|
[47] |
罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.
|
[48] |
罗景润, 张寿齐, 赵方芳, 等. 简单拉伸下高聚物粘结炸药的非线性本构关系[J]. 含能材料, 2000, 8(1): 42-45. doi: 10.3969/j.issn.1006-9941.2000.01.010LUO J R, ZHANG S Q, ZHAO F F, et al. Nonlinear constitutive relation of PBX under simple tension[J]. Energetic Materials, 2000, 8(1): 42-45. doi: 10.3969/j.issn.1006-9941.2000.01.010
|
[49] |
敬仕明. PBX有效力学性能及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2009.
|
[50] |
陈荣. 一种PBX炸药试样在复杂应力动态加载下的力学性能实验研究[D]. 长沙: 国防科学技术大学, 2010.
|
[51] |
赵玉刚, 傅华, 李俊玲, 等. 三种PBX炸药的动态拉伸力学性能[J]. 含能材料, 2011, 19(2): 194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016ZHAO Y G, FU H, LI J L, et al. Dynamic tensile mechanical properties of three types of PBX[J]. Chinese Journal of Energetic Materials, 2011, 19(2): 194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016
|
[52] |
董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
|
[53] |
JOHNSON G R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands: [s.n.], 1983.
|
[54] |
李东伟, 苗飞超, 张向荣, 等. 2, 4-二硝基苯甲醚基不敏感熔注炸药动态力学性能[J]. 兵工学报, 2021, 42(11): 2344-2349. doi: 10.3969/j.issn.1000-1093.2021.11.007LI D W, MIAO F C, ZHANG X R, et al. Dynamic mechanical properties of an insensitive DNAN-based melt-cast explosive[J]. Acta Armamentarii, 2021, 42(11): 2344-2349. doi: 10.3969/j.issn.1000-1093.2021.11.007
|
[55] |
胡雪垚, 聂贻韬, 沈飞, 等. 考虑应变率及密度影响的含铝PBX炸药本构模型[J]. 火炸药学报, 2021, 44(5): 631-636.HU X Y, NlE Y T, SHEN F, et al. A constitutive model of aluminized PBX explosive considering the effects of strain rate and density[J]. Chinese Journal of Explosives & Propellants, 2021, 44(5): 631-636.
|
[56] |
FIELD J E. Hot spot ignition mechanisms for explosives[J]. Accounts of Chemical Research, 1992, 25(11): 489-496. doi: 10.1021/ar00023a002
|
[57] |
FIELD J E, BOURNE N K, PALMER SJP, et al. Hot-spot ignition mechanisms for explosives and propellants[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1992, 339(1654): 269-283.
|
[58] |
BOWDEN F P. Initiation and growth of explosion in liquids and solids[J]. Am. J. Phys, 1952, 20(4): 250-251.
|
[59] |
ARMSTRONG R W, ELBAN W L. Materials science and technology aspects of energetic(explosive) materials[J]. Materials Science and Technology, 2006, 22(4): 381-395. doi: 10.1179/174328406X84049
|
[60] |
ARMSTRONG R W. Dislocation-assisted initiation of energetic materials[J]. Central European Journal of Energetic Materials, 2005, 2(3): 55-69.
|
[61] |
ASAY B. Shock wave science and technology reference library, Vol. 5: Non-shock initiation of explosives[M]. Berlin, Germany: Springer Science & Business Media, 2009.
|
[62] |
BOWDEN F P. Initiation and growth of explosion in liquids and solids[J]. American Journal of Physics, 1952, 20(4): 250.
|
[63] |
BOWDEN F P, YOFFE A D, LEVY PAUL W. Fast reactions in solids[J]. Physics Today, 1959, 12(6): 58-60.
|
[64] |
BRIDGMAN P W. The effect of high mechanical stress on certain solid explosives[J]. The Journal of Chemical Physics, 1947, 15(5): 311-313. doi: 10.1063/1.1746503
|
[65] |
WINTER R E, FIELD J E. The role of localized plastic flow in the impact initiation of explosives[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1975, 343(1634): 399-413. doi: 10.1098/rspa.1975.0074
|
[66] |
RECHT R F. Catastrophic thermoplastic shear[J]. Journal of Applied Mechanics, 1964, 31(2): 189-193. doi: 10.1115/1.3629585
|
[67] |
COFFEY C S, FRANKEL M J, LIDDIARD T P, et al. Experimental investigation of hot spots produced by high rate deformation and shocks[C]//Proc. Seventh Symposium(Int.) on Detonation, [S.l.]: [s.n.], 1981: 970-975.
|
[68] |
COFFEY C S. Hot spot production by moving dislocations in a rapidly deforming crystalline explosive[C]//Proc. Eighth Symposium(International) on Detonation. Albuquerque, New Mexic: [s.n.], 1985: 62-67.
|
[69] |
COFFEY C S, SHARMA J. Crystal failure and crack formation during plastic flow[J]. American Institute of Physics, 2002, 620(1): 563-566.
|
[70] |
FREY R B. The initiation of explosive charges by rapid shear[C]//Proceedings of the 7th Symposium(International) on Detonation. [S.l.]: [s.n.], 1982: 36-42.
|
[71] |
HOWE P M, GIBBONS J R G, WEBBER P E. An experimental investigation of the role of shear in initiation of detonation by impact[C]//Proceedings of the 8th International Detonation Symposium. [S.l.]: [s.n.], 1985: 294-306.
|
[72] |
HOWE P M. Effects of microstructure on explosive behavior[J]. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, 2000, 185: 141-183.
|
[73] |
AMOSOV A P, BOSTANDZHIYAN S A, KOZLOV V S. Ignition of solid explosives by the heat of dry friction[J]. Combustion, Explosion and Shock Waves, 1972, 8(3): 290-295. doi: 10.1007/BF00742304
|
[74] |
AMOSOV A P, BOSTANDZHIYAN S A, KOZLOV V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Combustion, Explosion and Shock Waves, 1976, 12(5): 627-631. doi: 10.1007/BF00743166
|
[75] |
AMOSOV A P. Heating and flaming of solid explosives under conditions of dry friction with abrasion[J]. Combustion, Explosion and Shock Waves, 1980, 16(3): 255-261. doi: 10.1007/BF00742124
|
[76] |
ATTETKOV A V. Frictional heating of a material in a pulse-periodic regime of thermal action[J]. Combustion, Explosion and Shock Waves, 1996, 32(4): 439-441. doi: 10.1007/BF01998495
|
[77] |
CHERNENKO E V, VAGANOVA N I, AFANAS'EVA L F. Study of long-duration friction of a chemically active powder[J]. Combustion, Explosion and Shock Waves, 1996, 32(1): 1-7. doi: 10.1007/BF01992184
|
[78] |
PETERSON P D, MORTENSEN K S, IDAR D J, et al. Strain field formation in plastic bonded explosives under compressional punch loading[J]. Journal of Materials Science, 2001, 36(6): 1395-1400. doi: 10.1023/A:1017572024183
|
[79] |
DIENES J K. Frictional hot-spots and propellant sensitivity[J]. MRS Online Proceedings Library, 1983, 24(1): 373-381.
|
[80] |
BONNETT D L, BUTLER P B. Hot-spot ignition of condensed phase energetic materials[J]. Journal of Propulsion and Power, 1996, 12(4): 680-690. doi: 10.2514/3.24089
|
[81] |
IDAR D J, LUCHT R A, STRAIGHT J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[R]. Los Alamos, N. M, U.S.: Los Alamos National Lab(LANL), 1998.
|
[82] |
BOURNE N K, MILNE A M. The temperature of a shock-collapsed cavity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2036): 1851-1861. doi: 10.1098/rspa.2002.1101
|
[83] |
WIEGAND D A. The influence of confinement on the mechanical properties of energetic materials[J]. AIP Conference Proceedings, 2000, 505(1): 675-678.
|
[84] |
WIEGAND D A, REDDINGIUS B. The strengthening of energetic materials under pressure[C]//24th Army Science Conference. Orlando, Florida: [s.n.], 2004.
|
[85] |
WIEGAND D, REDDINGIUS B, ELLIS K, et al. The roll of friction in the mechanical failure properties of a polymer particulate composite[J]. American Physical Society, 2008, 53(2): 39.
|
[86] |
WIEGAND D A, REDINGIUS B, ELLIS K, et al. Evidence for friction between crack surfaces during deformation of composite plastic bonded explosives[J]. AIP Conference Proceedings, 2009, 1195(1): 349-352.
|
[87] |
WIEGAND D A, REDINGIUS B, ELLIS K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International journal of solids and structures, 2011, 48(11-12): 1617-1629. doi: 10.1016/j.ijsolstr.2011.01.025
|
[88] |
郑孟菊, 俞统昌, 张银亮. 炸药的性能及测试技术[M]. 北京: 兵器工业出版社, 1990.
|
[89] |
尹孟超. 炸药的安全性评价方法与撞击感度试验鉴定技术[J]. 火炸药, 1991(3): 23-32.YI M C. Safety evaluation methods and impact sensitivity test identification techniques for explosives[J]. Pyrotechnics, 1991(3): 23-32.
|
[90] |
胡庆贤. 炸药摩擦感度测试方法的讨论[J]. 含能材料, 1998(2): 45-49.HU Q X. Discussion on the experimental method of explosive friction sensitivity[J]. Energetic Materials, 1998(2): 45-49.
|
[91] |
韩小平, 张元冲, 沈亚鹏, 等. B 炸药中绝热剪切带形成机理的细观研究[J]. 火炸药学报, 1997(2): 5-7, 11.HAN X P, ZHANG Y C, SHEN Y P, et al. The microscopic study of adiabatic shear bands of comp. B explosive column under impact[J]. Chinese Journal of Explosives & Propellants, 1997(2): 5-7, 11.
|
[92] |
韩小平, 张元冲, 沈亚鹏, 等. 快速加载下TNT材料中绝热剪切带的细观研究[J]. 实验力学, 1995, 10(2): 125-132.HAN X P, ZHANG Y C, SHEN Y P, et al. Microscopic study of adiabatic shear bands of TNT materials under fast loading[J]. Journal of Experimental Mechanics, 1995, 10(2): 125-132.
|
[93] |
代晓淦, 申春迎, 文玉史, 等. Steven试验中不同形状弹头撞击下炸药响应规律研究[J]. 含能材料, 2009, 17(1): 50-54. doi: 10.3969/j.issn.1006-9941.2009.01.013DAI X G, SHEN C Y, WEN Y S, et al. Reaction rule for explosive under different shape warhead impact in Steven test[J]. Chinese Journal of Energetic Materials, 2009, 17(1): 50-54. doi: 10.3969/j.issn.1006-9941.2009.01.013
|
[94] |
申春迎, 黄谦, 向永, 等. PBX炸药在滑道试验中的响应[J]. 四川兵工学报, 2015, 36(2): 136-140,148.SHEN C Y, HUANG Q, XIANG Y, et al. Reaction behavior for PBX explosives in skid test[J]. Journal of Sichuan Ordnance, 2015, 36(2): 136-140,148.
|
[95] |
TARVER C M, HALLQUIST J O, ERICKSON L M. Modeling short pulse duration shock initiation of solid explosives[R]. C. A, U.S.: Lawrence Livermore National Lab, 1985.
|
[96] |
DUAN Z P, WEN L J, LIU Y, et al. A pore collapse model for hot-spot ignition in shocked multi-component explosives[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(z): 19-24.
|
[97] |
KIM K. Development of a model of reaction rates in shocked multicomponent explosives[C]//Proceedings of the 9th Symposium (International) on Detonation. Portland, OR: [s.n.], 1989: 593-603.
|
[98] |
张振宇, 卢芳云, 王志兵, 等. PBX-9404炸药高压反应速率方程的研究[J]. 爆炸与冲击, 1999, 19(4): 360-364. doi: 10.3321/j.issn:1001-1455.1999.04.012ZHANG Z Y, LU F Y, WANG Z B, et al. Studies on high pressure reaction rate of PBX 9404[J]. Explosion and Shock Waves, 1999, 19(4): 360-364. doi: 10.3321/j.issn:1001-1455.1999.04.012
|
[99] |
BROWNING R V. Microstructural model of mechanical initiation of energetic materials[J]. AIP Conference Proceedings. American Institute of Physics, 1996, 370(1): 405-408.
|
[100] |
林文洲, 洪滔. 高能炸药摩擦感度理论初步研究[J]. 含能材料, 2007, 15(1): 12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004LIN W Z, HONG T. Theoretical analysis on friction sensitivity of high explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(1): 12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004
|
[101] |
王仲琦, 武建国, 白春华, 等. FAE炸药跌落撞击安全性数值分析[J]. 力学学报, 2010, 42(6): 1117-1124.WANG Z Q, WU J G, BAI C H, et al. Numerical analysis on impact safety of fuel air explosive[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1117-1124.
|
[102] |
王晨, 陈朗, 鲁峰, 等. 炸药跌落响应数值模拟分析[J]. 含能材料, 2012, 20(6): 748-753. doi: 10.3969/j.issn.1006-9941.2012.06.019WANG C, CHEN L, LU F, et al. Numerical simulation for spigot tests[J]. Chinese Journal of Energetic Materials, 2012, 20(6): 748-753. doi: 10.3969/j.issn.1006-9941.2012.06.019
|
[103] |
黄彬彬, 傅华, 喻寅, 等. 炸药落锤实验及样品厚度效应的三维数值模拟[J]. 高压物理学报, 2021, 35(2): 166-174. doi: 10.11858/gywlxb.20200636HUANG B B, FU H, YU Y, et al. Three-dimensional numerical simulation of explosive in drop hammer impact test and sample thickness effect[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 166-174. doi: 10.11858/gywlxb.20200636
|
[104] |
高家乐, 周霖, 苗飞超, 等. 过载环境下炸药装药点火过程的数值模拟[J]. 火炸药学报, 2022, 45(3): 323-331.GAO J L, ZHOU L, MIAO F C, et al. Numerical simulation of ignition process of explosive charge in overload environment[J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 323-331.
|
[105] |
何君道. 某中口径舰炮穿甲爆破弹引信系统分析、设计及相关技术研究[D]. 南京: 南京理工大学, 2012.
|
[106] |
高飞, 刘俊学, 侯旷怡. 钝感弹药评估标准发展与试验应用[J]. 四川兵工学报, 2013, 34(8): 40-42.GAO F, LIU J X, HOU K Y. The development and experimental application of evaluative standard of insensitive ammunition[J]. Journal of Sichuan Ordnance, 2013, 34(8): 40-42.
|
[107] |
李广嘉, 周涛, 曹玉武, 等. 带舱大型战斗部跌落响应数值分析[J]. 高压物理学报, 2018, 32(4): 153-157. doi: 10.11858/gywlxb.20170584LI G J, ZHOU T, CAO Y W, et al. Numerical analysis of falling response of large warhead in cabin[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 153-157. doi: 10.11858/gywlxb.20170584
|
[108] |
谢涛, 吕红超, 郝陈朋. 基于LS-DYNA的导弹战斗部跌落安全性分析[J]. 兵器装备工程学报, 2018, 39(8): 26-29. doi: 10.11809/bqzbgcxb2018.08.006XIE T, LV H C, HAO C P. Analysis on drop safety of missile warhead based on LS-DYNA[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 26-29. doi: 10.11809/bqzbgcxb2018.08.006
|
[109] |
洪昊, 朱敏, 王盛凹, 等. 半球形炸药部件跌落应力分析[J]. 兵器装备工程学报, 2019, 40(12): 210-214. doi: 10.11809/bqzbgcxb2019.12.041HONG H, ZHU M, WANG S A, et al. Stress analysis of dropping of hemispherical explosive part[J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 210-214. doi: 10.11809/bqzbgcxb2019.12.041
|
[110] |
乔良, 龚苹, 刘晋渤, 等. 战术导弹战斗部安全性评估方法研究[J]. 战术导弹技术, 2020(2): 34-38, 82.QIAO L, GONG P, LIU J B, et al. Research on the safety evaluation method of missile warhead[J]. Tactical Missile Technology, 2020(2): 34-38, 82.
|
[111] |
贾飞, 刘彦池, 苑大威, 等. 基于LS-DYNA的巡飞弹安全性分析研究[J]. 现代信息科技, 2021, 5(23): 43-47.JIA F, LIU Y C, YUAN D W, et al. Research on safety analysis of cruiser based on LS-DYNA[J]. Modern Information Technology, 2021, 5(23): 43-47.
|
[112] |
李彦超. 高g值冲击下装药弹体动力学响应研究[D]. 太原: 中北大学, 2021.
|
[113] |
王佳奇. 舰炮弹药引战一体勤务运输安全研究[D]. 沈阳: 沈阳理工大学, 2021.
|
[114] |
周金波, 赖建云, 叶枫桦. 战斗部跌落响应数值分析[J]. 数字海洋与水下攻防, 2022, 5(1): 44-49.ZHOU J B, LAI J Y, YE F H. Numerical analysis on drop response of warhead[J]. Digital Ocean & Underwater Warfare, 2022, 5(1): 44-49.
|
[115] |
NSA. Safety drop, munition test procedures: STANAG 4375-2003[S]. Brussels: NATO, 2003.
|
[116] |
MAS. Guidelines for the development, assessment and testing of insensitive munitions: NATOAOP-39[S]. Brussels: NATO, 1998.
|
[117] |
AMPLEMAN G. Development of a new generation of insensitive explosives and gun propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(2): 107-132. doi: 10.1615/IntJEnergeticMaterialsChemProp.v9.i2.10
|
[118] |
ISLER J. The transition to insensitive munitions(IM)[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(6): 283-291. doi: 10.1002/(SICI)1521-4087(199812)23:6<283::AID-PREP283>3.0.CO;2-H
|
[119] |
Agreemens N S. Policy for introduction and assessment of insensitive munitions(IM): NATO-STANAG 4439[S]. Brussels: NATO, 2010.
|
[120] |
航空工业部零一四中心. 空-空导弹最低安全要求: GJB 357-1987[S]. 北京: 国防科学技术工业委员会, 1987.
|
[121] |
中国人民解放军第二炮兵装备研究院. 地地常规导弹整体爆破弹头试验规程: GJB8018-2013[S]. 北京: 中国人民解放军总装备部, 2013.
|
[122] |
中国兵器装备集团公司. 战术导弹战斗部安全性评估方法: WJ 20343. 6-2016[S]. 北京: 国家国防科技工业局, 2016.
|
[123] |
国防科工委司令部. 弹药安全性试验规程: GJB3857-99[S]. 北京: 中国人民解放军总装备部, 1999.
|
[124] |
中国人民解放军海军. 海军导弹及其设备安全性要求: GJBZ 20296-1995[S]. 北京: 中国人民解放军总参谋部, 1995.
|
[125] |
中国兵器装备集团公司. 战术导弹战斗部通用规范: GJB 5144-2002[S]. 北京: 国防科学技术工业委员会, 2002.
|
[126] |
中国航天工业总公司. 地地导弹子母弹战斗部试验规程: GJB 4038-2000[S]. 北京: 中国航天标准化研究所出版社, 2000.
|
[127] |
中国人民解放军第二炮兵. 弹道式导弹常规弹头通用规范: GJB 3852-1999[S]. 北京: 中国人民解放军总装备部, 1999.
|
[128] |
中国兵器工业总公司. 反坦克导弹破甲战斗部通用规范: GJB 3557-99[S]. 北京: 中国人民解放军总装备部, 1999.
|
[129] |
中国航天科工集团第三研究院. 空中发射的飞航导弹最低安全要求: QJ 2280-1992[S]. 北京: 中华人民共和国航空航天工业部, 1992.
|
[130] |
中国兵器工业总公司. 火工品试验方法: GJB 5309-2004[S]. 北京: 国防科学技术委员会, 2004.
|
[131] |
中国兵器工业总公司. 引信环境与性能试验方法: GJB 573A-1998[S]. 北京: 中国人民解放军总装备部, 1998.
|