• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

战斗部跌落安全研究及对水雷战斗部的启示

卢熹 康松逸 贾曦雨 马峰

卢熹, 康松逸, 贾曦雨, 等. 战斗部跌落安全研究及对水雷战斗部的启示[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0092
引用本文: 卢熹, 康松逸, 贾曦雨, 等. 战斗部跌落安全研究及对水雷战斗部的启示[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2023-0092
LU Xi, KANG Songyi, JIA Xiyu, MA Feng. The Study of Warhead Drop Safety and Its Implications for Naval Mine Warheads[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0092
Citation: LU Xi, KANG Songyi, JIA Xiyu, MA Feng. The Study of Warhead Drop Safety and Its Implications for Naval Mine Warheads[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0092

战斗部跌落安全研究及对水雷战斗部的启示

doi: 10.11993/j.issn.2096-3920.2023-0092
基金项目: 国家自然科学基金青年基金(12202061); 国家自然科学基金重点项目(12141201, U20A2071).
详细信息
    作者简介:

    卢熹:卢 熹(1983-), 男, 副教授, 主要研究方向为武器弹药毁伤评估与战斗部设计

    通讯作者:

    贾曦雨(1988-), 男, 副研究员, 主要研究方向为水中爆炸、高精度数值计算等.

  • 中图分类号: TJ610.1

The Study of Warhead Drop Safety and Its Implications for Naval Mine Warheads

  • 摘要: 战斗部的跌落安全性涉及炸药配方、装药工艺、战斗部设计和服役环境等多方面。文中全面、充分地梳理了常规武器弹药战斗部跌落安全相关的文献资料, 从典型炸药撞击感度研究、典型炸药动态力学性能研究、战斗部装药跌落撞击非冲击点火理论研究、战斗部跌落试验与仿真研究以及战斗部跌落安全性评估方法与标准等5个方面对战斗部跌落安全性现状进行系统性剖析。文中的分析结果可为水雷武器战斗部跌落安全性研究提供借鉴和参考。

     

  • 图  1  落锤装置(a)和撞击装置(b)结构示意图

    Figure  1.  Schematic diagram of drop hammer set-up and impact experiment set-up

    图  2  试验件跌落撞击响应状态

    Figure  2.  Response state of test piece under drop impact

    图  3  由高速摄影机所拍摄的SHPB试验在2×103 s−1应变率下剪切带形成画面

    Figure  3.  High speed photography of shear bands developing in a SHPB specimen being compressed at 2×103 s−1

    图  4  PBS9501变形样品和与变形前相同尺寸参考塑料样品的照片

    Figure  4.  Photograph of deformed samples of PBS9501 and a reference plastic sample of the same dimensions as the PBS9501 samples before deformation

    图  5  0.3 GPa冲击下空腔从塌陷、闭合到喷射过程展示

    Figure  5.  Cavity collapse, closure to injection under 0.3 GPa impact

    图  6  跌落速度为20 m/s时不同时刻PBXC03炸药变形情况

    Figure  6.  Explosive deformation at drop velocity of 20 /s for PBXC03

    图  7  跌落速度为20 m/s时不同时刻PBXC03炸药内部温度分布

    Figure  7.  Temperature distributions at drop velocity of 20 m/s for PBXC03

    图  8  试验布局及结果图

    Figure  8.  Test layout and Test result

    图  9  战斗部跌落试验工况图

    Figure  9.  Drop test condition of warhead

  • [1] 许蕾, 张鹏. 国内外钝感弹药评估标准的发展与分析[J]. 航天标准化, 2010(4): 35-37. doi: 10.3969/j.issn.1009-234X.2010.04.009

    XU L, ZHANG P. The development and analysis of evaluating standard about insensitive ammunition at home and aboard[J]. Aerospace Standardization, 2010(4): 35-37. doi: 10.3969/j.issn.1009-234X.2010.04.009
    [2] N. S. Department of defense test method standard, hazard assessment tests for non-nuclear munitions: MIL-STD-2105D[S]. U.S.: Department of Defense, 2011.
    [3] 沙洪博, 袁俊明, 黄求安, 等. DNAN基熔铸装药榴弹跌落冲击特性与安全性分析[J]. 爆破器材, 2021, 50(5): 28-33,38. doi: 10.3969/j.issn.1001-8352.2021.05.005

    SHA H B, YUAN J M, HUANG Q A, et al. Drop impact characteristics and safety analysis of DNAN-based melt-cast charge grenade[J]. Explosive Materials, 2021, 50(5): 28-33,38. doi: 10.3969/j.issn.1001-8352.2021.05.005
    [4] 宗方勇, 柴朋军. 复合材料水雷壳体抗自由跌落冲击性能数值模拟分析[J]. 玻璃钢/复合材料, 2016(12): 90-98,22.

    ZONG F Y, CHAI P J. Impact simulation analysis for free falling status of composite torpedo shell[J]. FRP/Composite, 2016(12): 90-98,22.
    [5] 张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2009.
    [6] 王世英. 炸药装药在落锤撞击下的应力测试方法研究[J]. 计测技术, 2013, 33(z1): 49-52. doi: 10.3969/j.issn.1674-5795.2013.z1.015

    WANG S Y. Study of stress test methods for explosive charges under impact with a drop hammer[J]. Metrology & Measurement Technology, 2013, 33(z1): 49-52. doi: 10.3969/j.issn.1674-5795.2013.z1.015
    [7] 屈雪蕊. Comp. B含能材料落锤冲击应力特性分析[J]. 西安航空学院学报, 2021, 39(3): 70-74,96. doi: 10.3969/j.issn.1008-9233.2021.03.013

    QU X R. Stress Analysis of Falling Weight Impact Test of Comp. B Energetic Materials[J]. Journal of Xi’an Aeronautical University, 2021, 39(3): 70-74,96. doi: 10.3969/j.issn.1008-9233.2021.03.013
    [8] 国防科学技术工业委员会. 炸药试验方法: GJB772A-97[S]. 北京: 中国标准出版社, 1997.
    [9] 代晓淦, 向永, 申春迎, 等. 大药片落锤撞击感度研究[J]. 爆炸与冲击, 2006, 26(4): 381-384. doi: 10.3321/j.issn:1001-1455.2006.04.017

    DAI Xi G, XIANG Y, SHEN C Y, et al. Study of drop hammer impact sensitivity for big-bill explosives[J]. Explosion and Shock Waves, 2006, 26(4): 381-384. doi: 10.3321/j.issn:1001-1455.2006.04.017
    [10] 高立龙, 牛余雷, 王浩, 等. 典型炸药柱的400kg落锤撞击感度特性分析[J]. 含能材料, 2011, 19(4): 428-431. doi: 10.3969/j.issn.1006-9941.2011.04.017

    GAO L L, NIU Y L, WANG H, et al. Analysis of impact sensitivity characteristics for typical explosive cylinder[J]. Chinese Journal of Energetic Materials, 2011, 19(4): 428-431. doi: 10.3969/j.issn.1006-9941.2011.04.017
    [11] 王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(z1): 33-39. doi: 10.3969/j.issn.1000-1093.2021.S1.004

    WANG X Y, WANG S S, WANG S H, et al. Drop impact response characteristics of typical explosive charge in underwater warhead[J]. Acta Armamentarii, 2021, 42(z1): 33-39. doi: 10.3969/j.issn.1000-1093.2021.S1.004
    [12] 汪建锋, 白春华, 李建平, 等. 一次起爆型FAE装药发射安全性实验研究[J]. 弹箭与制导学报, 2008, 28(3): 107-109. doi: 10.3969/j.issn.1673-9728.2008.03.032

    WANG J F, BAI C H, LI J P, et al. The experimental investigation on launching safety of fae explosive charge[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 107-109. doi: 10.3969/j.issn.1673-9728.2008.03.032
    [13] 高大元, 申春迎, 黄谦, 等. 炸药件在模拟跌落试验中的响应[J]. 火炸药学报, 2012, 35(5): 13-16. doi: 10.3969/j.issn.1007-7812.2012.05.003

    GAO D Y, SHEN C Y, HUANG Q, et al. Reaction of explosive subassembly under simulated drop test[J]. Chinese Journal of Explosives & Propellants, 2012, 35(5): 13-16. doi: 10.3969/j.issn.1007-7812.2012.05.003
    [14] 廖军, 代晓淦, 黄谦, 等. 药片落锤撞击试验中B炸药的响应特性[J]. 火炸药学报, 2013, 36(1): 52-54. doi: 10.3969/j.issn.1007-7812.2013.01.011

    LIAO J, DAI X G, HUANG Q, et al. Reaction characteristic for composition b in drop hammer impact sensitivity test[J]. Chinese Journal of Explosives & Propellants, 2013, 36(1): 52-54. doi: 10.3969/j.issn.1007-7812.2013.01.011
    [15] 徐洪涛, 孔德仁, 胡宏伟, 等. 火炸药药柱撞击感度试验装置及方法[J]. 火炸药学报, 2010, 33(3): 30-33. doi: 10.3969/j.issn.1007-7812.2010.03.008

    XU H T, KONG D R, HU H W, et al. Impact sensitivity test system and test method of explosives column[J]. Chinese Journal of Explosives & Propellants, 2010, 33(3): 30-33. doi: 10.3969/j.issn.1007-7812.2010.03.008
    [16] 徐洪涛, 宋震, 田轩, 等. 两种典型炸药装药的撞击试验研究[J]. 火工品, 2015(2): 29-32. doi: 10.3969/j.issn.1003-1480.2015.02.009

    XU H T, SONG Z, TIAN X, et al. The experimental research on the impact safety of the two explosive charges[J]. Initiators & Pyrotechnics, 2015(2): 29-32. doi: 10.3969/j.issn.1003-1480.2015.02.009
    [17] 徐洪涛, 冯博, 冯晓军, 等. 低速撞击不同温度下炸药药柱的响应特性[J]. 爆破器材, 2015, 44(1): 16-19. doi: 10.3969/j.issn.1001-8352.2015.01.004

    XU H T, FENG B, FENG X J, et al. Reaction characteristic of explosive columns on different temperatures in low speed impacting multiple test[J]. Explosive Materials, 2015, 44(1): 16-19. doi: 10.3969/j.issn.1001-8352.2015.01.004
    [18] 陈皓, 徐洪涛, 邹洪辉, 等. 典型炸药药柱撞击感度的试验研究[J]. 火炸药学报, 2018, 41(2): 127-130,136.

    CHEN H, XU H T, ZOU H H, et al. Experimental study on impact sensitivity of typical explosive grain[J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 127-130,136.
    [19] WIEGAND D A, PINTO J, NICOLAIDES S. The mechanical response of TNT and a composite, composition b, of TNT and RDX to compressive stress: I uniaxial stress and fracture[J]. Journal of Energetic Materials, 1991, 9(1-2): 19-80. doi: 10.1080/07370659108019858
    [20] WIEGAND D A, PINTO J. The mechanical response of TNT and a composite, Composition B, of TNT and RDX to compressive stress: III dependence on processing and composition[J]. Journal of Energetic Materials, 1991, 9(5): 349-413. doi: 10.1080/07370659108019381
    [21] PINTO J, WIEGAND D A. The mechanical response of TNT and A composite, composition B, of TNT and RDX to compressive stress: II triaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(3): 205-263. doi: 10.1080/07370659108019865
    [22] GRAY III G T, IDAR D J, BLUMENTHAL W R, et al. High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature[R]. Los Alamos, NM(U.S.): Los Alamos National Lab(LANL), 1998.
    [23] IDAR D J, THOMPSON D G, GRAY III G T, et al. Influence of polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501[J]. Institute of Physics, 2002, 620(1): 821-824.
    [24] BLUMENTHAL W R, GRAY III G T, IDAR D J, et al. Influence of temperature and strain rate on the mechanical behavior of PBX 9502 and Kel-F 800™[J]. American Institute of Physics, 2000, 505(1): 671-674.
    [25] CADY C M, BLUMENTHAL W R, GRAY III G T, et al. Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature[J]. Polymer Engineering & Science, 2006, 46(6): 812-819.
    [26] HOFFMAN D M. Dynamic mechanical signatures of a polyester-urethane and plastic-bonded explosives based on this polymer[J]. Journal of Applied Polymer Science, 2002, 83(5): 1009-1024. doi: 10.1002/app.2281
    [27] BLUMENTHAL W R, THOMPSON D G, CADY C M, et al. Compressive properties of PBXN-110 and its HTPB binder as a function of temperature and strain rate[C]//San Diego, CA, United States: The 12th International Detonation Symposium, 2002.
    [28] DRODGE D, WILLIAMSON D M, PALMER S, et al. Strain-rate master curves for a PBX and binder[J]. American Institute of Physics, 2011, 1426: 653-656.
    [29] DRODGE D R, WILLIAMSON D M, PALMER S J P, et al. The mechanical response of a PBX and binder: Combining results across the strain-rate and frequency domains[J]. Journal of Physics D: Applied Physics, 2010, 43(33): 335403. doi: 10.1088/0022-3727/43/33/335403
    [30] WILLIAMSON D M, SIVIOUR C R, PROUD W G, et al. Temperature–time response of a polymer bonded explosive in compression (EDC37)[J]. Journal of Physics D: Applied Physics, 2008, 41(8): 085404. doi: 10.1088/0022-3727/41/8/085404
    [31] WIEGAND D A, REDDINGIUS B. Mechanical properties of confined explosives[J]. Journal of Energetic Materials, 2005, 23(2): 75-98. doi: 10.1080/07370650590936415
    [32] 蓝林钢, 温茂萍, 李明, 等. 被动围压下PBX的冲击动态力学性能[J]. 火炸药学报, 2011, 34(4): 41-44. doi: 10.3969/j.issn.1007-7812.2011.04.010

    LAN L G, WEN M P, LI M, et al. Impact mechanical properties of pbx in passive confined pressure[J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 41-44. doi: 10.3969/j.issn.1007-7812.2011.04.010
    [33] 韩小平, 张元冲, 张泰华, 等. 含能材料受限三轴压缩实验的数值模拟[J]. 火炸药学报, 1999, 18(2): 51-55. doi: 10.3969/j.issn.1007-7812.1999.02.014

    HAN X P, ZHANG Y C, ZHANG T H, et al. The numerical modeling of mechanical response of energetic materials to confined triaxial compression[J]. Chinese Journal of Explosives & Propellants, 1999, 18(2): 51-55. doi: 10.3969/j.issn.1007-7812.1999.02.014
    [34] 韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态压缩力学性能和本构关系的研究[J]. 实验力学, 1996, 11(3): 303-310.

    HAN X P, ZHANG Y C, SHEN Y P, et al. Dynamic behavior and constitutive model of comp. B explosive[J]. Journal of Experimental Mechanics, 1996, 11(3): 303-310.
    [35] 韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态力学性能和塑性流动本构关系的研究[J]. 力学学报, 1996, 28(3): 64-72.

    HAN X P, ZHANG Y C, SHEN Y P, et al. A study of dynamic mechnical response and constitutive model of energetic materials[J]. Acta Mechanica Sinica, 1996, 28(3): 64-72.
    [36] 韩小平, 张元冲, 沈亚鹏, 等. 高能材料动态力学性能的研究[J]. 爆炸与冲击, 1995(1): 20-27. doi: 10.11883/1001-1455(1995)01-0020-8

    HAN X P, ZHANG Y C, SHEN Y P, et al. An experimental study on dynamic mechanical properties of energetic materials[J]. Explosion and Shock Waves, 1995(1): 20-27. doi: 10.11883/1001-1455(1995)01-0020-8
    [37] BROWNING R V, GURTIN M E, WILLIAMS W O. A one-dimensional viscoplastic constitutive theory for filled polymers[J]. International Journal of Solids and Structures, 1984, 20(11): 921-934.
    [38] SEAMAN L, SIMONS J W, ERLICH D C, et al. Development of a viscous internal damage model for energetic materials based on the BFRACT microfracture model[C]//11th International Detonation Symposium. Snowmass, Colorado, U.S.: [s.n.], 1998: 632-639.
    [39] SCHAPERY R A. Nonlinear viscoelastic solids[J]. International Journal of Solids and Structures, 2000, 37(1): 359-366.
    [40] SCHAPERY R A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215-253. doi: 10.1016/0022-5096(90)90035-3
    [41] SCHAPERY R A. A micromechanical model for non-linear viscoelastic behavior of particle-reinforced rubber with distributed damage[J]. Engineering Fracture Mechanics, 1986, 25(5): 845-867.
    [42] 李英雷, 李大红, 胡时胜, 等. TATB钝感炸药本构关系的实验研究[J]. 爆炸与冲击, 1999, 19(4): 353-359. doi: 10.3321/j.issn:1001-1455.1999.04.011

    LI Y L, LI D H, HU S S, et al. An experimental study on constitutive relationof TATB explosive[J]. Explosion and Shock Waves, 1999, 19(4): 353-359. doi: 10.3321/j.issn:1001-1455.1999.04.011
    [43] 周风华, 王札立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342. doi: 10.11883/1001-1455(1992)04-0333-10

    ZHOU F H, WANG Z L, HU S S. A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of pmma at high strain-rates[J]. Explosion and Shock Waves, 1992, 12(4): 333-342. doi: 10.11883/1001-1455(1992)04-0333-10
    [44] 吴会民, 卢芳云. 一种高聚物粘结炸药和B炸药的本构关系研究[J]. 高压物理学报, 2005, 19(2): 139-144. doi: 10.3969/j.issn.1000-5773.2005.02.007

    WU H M, LU F Y. Research on Constitutive Relation of a Polymer Bonded Explosive and Pressed Comp. B[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 139-144. doi: 10.3969/j.issn.1000-5773.2005.02.007
    [45] 吴会民, 卢芳云, 卢力, 等. 三种含能材料力学行为应变率效应的实验研究[J]. 含能材料, 2004, 12(4): 227-230. doi: 10.3969/j.issn.1006-9941.2004.04.008

    WU H M, LU F Y, LU L, et al. Experimental studies on strain-rate effects of mechanical behaviors of energetic materials[J]. Energetic Materials, 2004, 12(4): 227-230. doi: 10.3969/j.issn.1006-9941.2004.04.008
    [46] 卢芳云, 林玉亮, 王晓燕, 等. 含能材料的高应变率响应实验[J]. 火炸药学报, 2006, 19(1): 1-4. doi: 10.3969/j.issn.1007-7812.2006.01.001

    LU F Y, LIN Y L, WANG X Y, et al. Experimental investigation on dynamic response of energetic materials at high strain rate[J]. Chinese Journal of Explosives & Propellants, 2006, 19(1): 1-4. doi: 10.3969/j.issn.1007-7812.2006.01.001
    [47] 罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.
    [48] 罗景润, 张寿齐, 赵方芳, 等. 简单拉伸下高聚物粘结炸药的非线性本构关系[J]. 含能材料, 2000, 8(1): 42-45. doi: 10.3969/j.issn.1006-9941.2000.01.010

    LUO J R, ZHANG S Q, ZHAO F F, et al. Nonlinear constitutive relation of pbx under simple tension[J]. Energetic Materials, 2000, 8(1): 42-45. doi: 10.3969/j.issn.1006-9941.2000.01.010
    [49] 敬仕明. PBX有效力学性能及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2009.
    [50] 陈荣. 一种PBX炸药试样在复杂应力动态加载下的力学性能实验研究 [D]. 长沙: 国防科学技术大学, 2010.
    [51] 赵玉刚, 傅华, 李俊玲, 等. 三种PBX炸药的动态拉伸力学性能[J]. 含能材料, 2011, 19(2): 194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016

    ZHAO Y G, FU H, LI J L, et al. Dynamic tensile mechanical properties of three types of PBX[J]. Chinese Journal of Energetic Materials, 2011, 19(2): 194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016
    [52] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
    [53] JOHNSON G R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands: [s.n.], 1983.
    [54] 李东伟, 苗飞超, 张向荣, 等. 2, 4-二硝基苯甲醚基不敏感熔注炸药动态力学性能[J]. 兵工学报, 2021, 42(11): 2344-2349. doi: 10.3969/j.issn.1000-1093.2021.11.007

    LI D W, MIAO F C, ZHANG X R, et al. Dynamic mechanical properties of an insensitive dnan-based melt-cast explosive[J]. Acta Armamentarii, 2021, 42(11): 2344-2349. doi: 10.3969/j.issn.1000-1093.2021.11.007
    [55] 胡雪垚, 聂贻韬, 沈飞, 等. 考虑应变率及密度影响的含铝PBX炸药本构模型[J]. 火炸药学报, 2021, 44(5): 631-636.

    HU X Y, NlE Y T, SHEN F, et al. A constitutive model of aluminized pbx explosive considering the effects of strain rate and density[J]. Chinese Journal of Explosives & Propellants, 2021, 44(5): 631-636.
    [56] FIELD J E. Hot spot ignition mechanisms for explosives[J]. Accounts of Chemical Research, 1992, 25(11): 489-496. doi: 10.1021/ar00023a002
    [57] FIELD J E, BOURNE N K, PALMER SJP, et al. Hot-spot ignition mechanisms for explosives and propellants[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1992, 339(1654): 269-283.
    [58] BOWDEN F P. Initiation and growth of explosion in liquids and solids[J]. Am. J. Phys, 1952, 20(4): 250-251.
    [59] ARMSTRONG R W, ELBAN W L. Materials science and technology aspects of energetic(explosive) materials[J]. Materials Science and Technology, 2006, 22(4): 381-395. doi: 10.1179/174328406X84049
    [60] ARMSTRONG R W. Dislocation-assisted initiation of energetic materials[J]. Central European Journal of Energetic Materials, 2005, 2(3): 55-69.
    [61] ASAY B. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives[M]. Berlin, Germany: Springer Science & Business Media, 2009.
    [62] BOWDEN F P. Initiation and growth of explosion in liquids and solids[J]. American Journal of Physics, 1952, 20(4): 250.
    [63] BOWDEN F P, YOFFE A D, LEVY PAUL W. Fast reactions in solids[J]. Physics Today, 1959, 12(6): 58-60.
    [64] BRIDGMAN P W. The effect of high mechanical stress on certain solid explosives[J]. The Journal of Chemical Physics, 1947, 15(5): 311-313. doi: 10.1063/1.1746503
    [65] WINTER R E, FIELD J E. The role of localized plastic flow in the impact initiation of explosives[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1975, 343(1634): 399-413. doi: 10.1098/rspa.1975.0074
    [66] RECHT R F. Catastrophic thermoplastic shear[J]. Journal of Applied Mechanics, 1964, 31(2): 189-193. doi: 10.1115/1.3629585
    [67] COFFEY C S, FRANKEL M J, LIDDIARD T P, et al. Experimental investigation of hot spots produced by high rate deformation and shocks[C]//Proc. Seventh Symposium(Int.) on Detonation, [S.l.]: [s.n.], 1981: 970-975.
    [68] COFFEY C S. Hot spot production by moving dislocations in a rapidly deforming crystalline explosive[C]//Proc. Eighth Symposium (International) on Detonation. Albuquerque, New Mexic: [s.n.], 1985: 62-67.
    [69] COFFEY C S, Sharma J. Crystal failure and crack formation during plastic flow[J]. American Institute of Physics, 2002, 620(1): 563-566.
    [70] FREY R B. The initiation of explosive charges by rapid shear[C]//Proceedings of the 7th Symposium(International) on Detonation. [S.l.]: [s.n.], 1982: 36-42.
    [71] HOWE P M, GIBBONS JR G, WEBBER P E. An experimental investigation of the role of shear in initiation of detonation by impact[C]//Proceedings of the 8th International Detonation Symposium. [S.l.]: [s.n.], 1985: 294-306.
    [72] HOWE P M. Effects of microstructure on explosive behavior[J]. Solid propellant chemistry, combustion, and motor interior ballistics, 2000, 185: 141-183.
    [73] AMOSOV A P, BOSTANDZHIYAN S A, KOZLOV V S. Ignition of solid explosives by the heat of dry friction[J]. Combustion, Explosion and Shock Waves, 1972, 8(3): 290-295. doi: 10.1007/BF00742304
    [74] AMOSOV A P, BOSTANDZHIYAN S A, KOZLOV V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Combustion, Explosion and Shock Waves, 1976, 12(5): 627-631. doi: 10.1007/BF00743166
    [75] AMOSOV A P. Heating and flaming of solid explosives under conditions of dry friction with abrasion[J]. Combustion, Explosion and Shock Waves, 1980, 16(3): 255-261. doi: 10.1007/BF00742124
    [76] ATTETKOV A V. Frictional heating of a material in a pulse-periodic regime of thermal action[J]. Combustion, Explosion and Shock Waves, 1996, 32(4): 439-441. doi: 10.1007/BF01998495
    [77] CHERNENKO E V, VAGANOVA N I, AFANAS'EVA L F. Study of long-duration friction of a chemically active powder[J]. Combustion, Explosion and Shock Waves, 1996, 32(1): 1-7. doi: 10.1007/BF01992184
    [78] PETERSON P D, MORTENSEN K S, IDAR D J, et al. Strain field formation in plastic bonded explosives under compressional punch loading[J]. Journal of Materials Science, 2001, 36(6): 1395-1400. doi: 10.1023/A:1017572024183
    [79] DIENES J K. Frictional hot-spots and propellant sensitivity[J]. MRS Online Proceedings Library, 1983, 24(1): 373-381.
    [80] BONNETT D L, BUTLER P B. Hot-spot ignition of condensed phase energetic materials[J]. Journal of Propulsion and Power, 1996, 12(4): 680-690. doi: 10.2514/3.24089
    [81] IDAR D J, LUCHT R A, STRAIGHT J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[R]. Los Alamos, N. M, U.S.: Los Alamos National Lab(LANL), 1998.
    [82] BOURNE N K, MILNE A M. The temperature of a shock-collapsed cavity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2036): 1851-1861. doi: 10.1098/rspa.2002.1101
    [83] WIEGAND D A. The influence of confinement on the mechanical properties of energetic materials[J]. AIP Conference Proceedings, 2000, 505(1): 675-678.
    [84] WIEGAND D A, REDDINGIUS B. The strengthening of energetic materials under pressure[C]//24 th Army Science Conference. Orlando, Florida: [s.n.], 2004.
    [85] WIEGAND D, REDDINGIUS B, ELLIS K, et al. The roll of friction in the mechanical failure properties of a polymer particulate composite[J]. American Physical Society, 2008, 53(2): 39.
    [86] WIEGAND D A, REDINGIUS B, ELLIS K, et al. Evidence for friction between crack surfaces during deformation of composite plastic bonded explosives[J]. AIP Conference Proceedings, 2009, 1195(1): 349-352.
    [87] WIEGAND D A, REDINGIUS B, ELLIS K, et al. Pressure and friction dependent mechanical strength–cracks and plastic flow[J]. International journal of solids and structures, 2011, 48(11-12): 1617-1629. doi: 10.1016/j.ijsolstr.2011.01.025
    [88] 郑孟菊, 俞统昌, 张银亮. 炸药的性能及测试技术[M]. 北京: 兵器工业出版社, 1990.
    [89] 尹孟超. 炸药的安全性评价方法与撞击感度试验鉴定技术[J]. 火炸药, 1991(3): 23-32.

    YI M C. Safety evaluation methods and impact sensitivity test identification techniques for explosives[J]. Pyrotechnics, 1991(3): 23-32.
    [90] 胡庆贤. 炸药摩擦感度测试方法的讨论[J]. 含能材料, 1998(2): 45-49.

    HU Q X. Discussion on the experimental method of explosive friction sensitivity[J]. Energetic Materials, 1998(2): 45-49.
    [91] 韩小平, 张元冲, 沈亚鹏, 等. B 炸药中绝热剪切带形成机理的细观研究[J]. 火炸药学报, 1997(2): 5-7, 11.

    HAN X P, ZHANG Y C, SHEN Y P, et al. The Microscopic Study of Adiabatic Shear Bands of Comp. B Explosive Column under Impact[J]. Chinese Journal Of Explosives & Propellants, 1997(2): 5-7, 11.
    [92] 韩小平, 张元冲, 沈亚鹏, 等. 快速加载下TNT材料中绝热剪切带的细观研究[J]. 实验力学, 1995, 10(2): 125-132.

    HAN X P, ZHANG Y C, SHEN Y P, et al. Microscopic study of adiabatic shear bands of tnt materials under fast loading[J]. Journal of Experimental Mechanics, 1995, 10(2): 125-132.
    [93] 代晓淦, 申春迎, 文玉史, 等. Steven试验中不同形状弹头撞击下炸药响应规律研究[J]. 含能材料, 2009, 17(1): 50-54. doi: 10.3969/j.issn.1006-9941.2009.01.013

    DAI X G, SHEN C Y, WEN Y S, et al. Reaction rule for explosive under different shape warhead impact in steven test[J]. Chinese Journal of Energetic Materials, 2009, 17(1): 50-54. doi: 10.3969/j.issn.1006-9941.2009.01.013
    [94] 申春迎, 黄谦, 向永, 等. PBX炸药在滑道试验中的响应[J]. 四川兵工学报, 2015, 36(2): 136-140,148.

    SHEN C Y, HUANG Q, XIANG Y, et al. Reaction behavior for PBX explosives in skid test[J]. Journal of Sichuan Ordnance, 2015, 36(2): 136-140,148.
    [95] TARVER C M, HALLQUIST J O, ERICKSON L M. Modeling short pulse duration shock initiation of solid explosives[R]. C. A. U.S.: Lawrence Livermore National Lab, 1985.
    [96] DUAN Z P, WEN L J, LIU Y, et al. A pore collapse model for hot-spot ignition in shocked multi-component explosives[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(z): 19-24.
    [97] KIM K. Development of a model of reaction rates in shocked multicomponent explosives[C]//Proceedings of the 9th Symposium (International) on Detonation. Portland, OR: [s.n.], 1989: 593-603.
    [98] 张振宇, 卢芳云, 王志兵, 等. PBX-9404炸药高压反应速率方程的研究[J]. 爆炸与冲击, 1999, 19(4): 360-364. doi: 10.3321/j.issn:1001-1455.1999.04.012

    ZHANG Z Y, LU F Y, WANG Z B, et al. Studies on high pressure reaction rate of PBX 9404[J]. Explosion and Shock Waves, 1999, 19(4): 360-364. doi: 10.3321/j.issn:1001-1455.1999.04.012
    [99] BROWNING R V. Microstructural model of mechanical initiation of energetic materials[J]. AIP Conference Proceedings. American Institute of Physics, 1996, 370(1): 405-408.
    [100] 林文洲, 洪滔. 高能炸药摩擦感度理论初步研究[J]. 含能材料, 2007, 15(1): 12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004

    LIN W Z, HONG T. Theoretical Analysis on Friction Sensitivity of High Explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(1): 12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004
    [101] 王仲琦, 武建国, 白春华, 等. FAE炸药跌落撞击安全性数值分析[J]. 力学学报, 2010, 42(6): 1117-1124.

    WANG Z Q, WU J G, BAI C H, et al. Numerical analysis on impact safety of fuel air explosive[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1117-1124.
    [102] 王晨, 陈朗, 鲁峰, 等. 炸药跌落响应数值模拟分析[J]. 含能材料, 2012, 20(6): 748-753. doi: 10.3969/j.issn.1006-9941.2012.06.019

    WANG C, CHEN L, LU F, et al. Numerical simulation for spigot tests[J]. Chinese Journal of Energetic Materials, 2012, 20(6): 748-753. doi: 10.3969/j.issn.1006-9941.2012.06.019
    [103] 黄彬彬, 傅华, 喻寅, 等. 炸药落锤实验及样品厚度效应的三维数值模拟[J]. 高压物理学报, 2021, 35(2): 166-174. doi: 10.11858/gywlxb.20200636

    HUANG B B, FU H, YU Y, et al. Three-dimensional numerical simulation of explosive in drop hammer impact test and sample thickness effect[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 166-174. doi: 10.11858/gywlxb.20200636
    [104] 高家乐, 周霖, 苗飞超, 等. 过载环境下炸药装药点火过程的数值模拟[J]. 火炸药学报, 2022, 45(3): 323-331.

    GAO J L, ZHOU L, MIAO F C, et al. Numerical simulation of ignition process of explosive charge in overload environment[J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 323-331.
    [105] 何君道. 某中口径舰炮穿甲爆破弹引信系统分析、设计及相关技术研究 [D]. 南京: 南京理工大学, 2012.
    [106] 高飞, 刘俊学, 侯旷怡. 钝感弹药评估标准发展与试验应用[J]. 四川兵工学报, 2013, 34(8): 40-42.

    GAO F, LIU J X, HOU K J. The development and experimental application of evaluative standard of insensitive ammunition[J]. Journal of Sichuan Ordnance, 2013, 34(8): 40-42.
    [107] 李广嘉, 周涛, 曹玉武, 等. 带舱大型战斗部跌落响应数值分析[J]. 高压物理学报, 2018, 32(4): 153-157. doi: 10.11858/gywlxb.20170584

    LI G J, ZHOU T, CAO Y W, et al. Numerical analysis of falling response of large warhead in cabin[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 153-157. doi: 10.11858/gywlxb.20170584
    [108] 谢涛, 吕红超, 郝陈朋. 基于LS-DYNA的导弹战斗部跌落安全性分析[J]. 兵器装备工程学报, 2018, 39(8): 26-29. doi: 10.11809/bqzbgcxb2018.08.006

    XIE T, LV H C, HAO C P. Analysis on drop safety of missile warhead based on LS-DYNA[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 26-29. doi: 10.11809/bqzbgcxb2018.08.006
    [109] 洪昊, 朱敏, 王盛凹, 等. 半球形炸药部件跌落应力分析[J]. 兵器装备工程学报, 2019, 40(12): 210-214. doi: 10.11809/bqzbgcxb2019.12.041

    HONG H, ZHU M, WANG S A, et al. Stress analysis of dropping of hemispherical explosive part[J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 210-214. doi: 10.11809/bqzbgcxb2019.12.041
    [110] 乔良, 龚苹, 刘晋渤, 等. 战术导弹战斗部安全性评估方法研究[J]. 战术导弹技术, 2020(2): 34-38, 82.

    QIAO L, GONG P, LIU J B, et al. Research on the safety evaluation method of missile warhead[J]. Tactical Missile Technology, 2020(2): 34-38, 82.
    [111] 贾飞, 刘彦池, 苑大威, 等. 基于LS-DYNA的巡飞弹安全性分析研究[J]. 现代信息科技, 2021, 5(23): 43-47.

    JIA F, LIU Y C, YUAN D W, et al. Research on safety analysis of cruiser based on LS-DYNA[J]. Modern Information Technology, 2021, 5(23): 43-47.
    [112] 李彦超. 高g值冲击下装药弹体动力学响应研究[D]. 太原: 中北大学, 2021.
    [113] 王佳奇. 舰炮弹药引战一体勤务运输安全研究[D]. 沈阳: 沈阳理工大学, 2021.
    [114] 周金波, 赖建云, 叶枫桦. 战斗部跌落响应数值分析[J]. 数字海洋与水下攻防, 2022, 5(1): 44-49.

    ZHOU J B, LAI J Y, YE F H. Numerical analysis on drop response of warhead[J]. Digital Ocean & Underwater Warfare, 2022, 5(1): 44-49.
    [115] NSA. Safety drop, munition test procedures: STANAG 4375-2003[S]. Brussels: NATO, 2003.
    [116] MAS. Guidelines for the development, assessment and testing of insensitive munitions: NATOAOP-39[S]. Brussels: NATO, 1998.
    [117] AMPLEMAN G. Development of a new generation of insensitive explosives and gun propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(2): 107-132. doi: 10.1615/IntJEnergeticMaterialsChemProp.v9.i2.10
    [118] ISLER J. The transition to insensitive munitions(IM)[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(6): 283-291. doi: 10.1002/(SICI)1521-4087(199812)23:6<283::AID-PREP283>3.0.CO;2-H
    [119] Agreemens N S. Policy for introduction and assessment of insensitive munitions(IM): NATO-STANAG 4439[S]. Brussels: NATO, 2010.
    [120] 航空工业部零一四中心. 空-空导弹最低安全要求: GJB 357-1987 [S]. 北京: 国防科学技术工业委员会, 1987.
    [121] 中国人民解放军第二炮兵装备研究院. 地地常规导弹整体爆破弹头试验规程: GJB8018-2013[S]. 北京: 中国人民解放军总装备部, 2013.
    [122] 中国兵器装备集团公司. 战术导弹战斗部安全性评估方法: WJ 20343. 6-2016[S]. 北京: 国家国防科技工业局, 2016.
    [123] 国防科工委司令部. 弹药安全性试验规程: GJB3857-99[S]. 1999.
    [124] 中国人民解放军海军. 海军导弹及其设备安全性要求: GJBZ 20296-1995[S]. 北京: 中国人民解放军总参谋部, 1995.
    [125] 中国兵器装备集团公司. 战术导弹战斗部通用规范: GJB 5144-2002[S]. 北京: 国防科学技术工业委员会, 2002.
    [126] 中国航天工业总公司. 地地导弹子母弹战斗部试验规程: GJB 4038-2000[S]. 北京: 中国航天标准化研究所出版社, 2000.
    [127] 中国人民解放军第二炮兵. 弹道式导弹常规弹头通用规范: GJB 3852-1999 [S]. 北京: 中国人民解放军总装备部, 1999.
    [128] 中国兵器工业总公司. 反坦克导弹破甲战斗部通用规范: GJB 3557-99 [S]. 北京: 中国人民解放军总装备部, 1999.
    [129] 中国航天科工集团第三研究院. 空中发射的飞航导弹最低安全要求: QJ 2280-1992[S]. 北京: 中华人民共和国航空航天工业部, 1992.
    [130] 中国兵器工业总公司. 火工品试验方法: GJB 5309-2004[S]. 北京: 国防科学技术委员会, 2004.
    [131] 中国兵器工业总公司. 引信环境与性能试验方法: GJB 573A-1998[S]. 北京: 中国人民解放军总装备部, 1998.
  • 加载中
图(9)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  39
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-10-11
  • 录用日期:  2023-10-30
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回
    服务号
    订阅号